

Robert Edgar

Independent scientist robert@drive5.com www.drive5.com

Let's dive into the hornets' nest

"Bacterial taxonomy is a hornets' nest that no one, really, wants to get into."

Referee #1, UTAX paper

Authoritative classifications

- Assume prokaryotic "species" meaningful
- Starting point for automated classification
 - Database of sequences + taxonomy annotations
- Bacteria & Archaea
 - ~1ok sequenced isolated strains

Authoritative classifications

Classified prokaryotes

- ~12k named species
- ~2,300 genera
- Tiny fraction of total
- RDP Classifier training set v14 (RDP14)
 - 10k full-length 16S sequences
 - classified to genus but not species
 - ~2k genera
 - Best approximation I know of for authoritative db
 - Named isolate set with species names, no longer supported?
 - No 16S database documents "gold standard" subset AFAIK

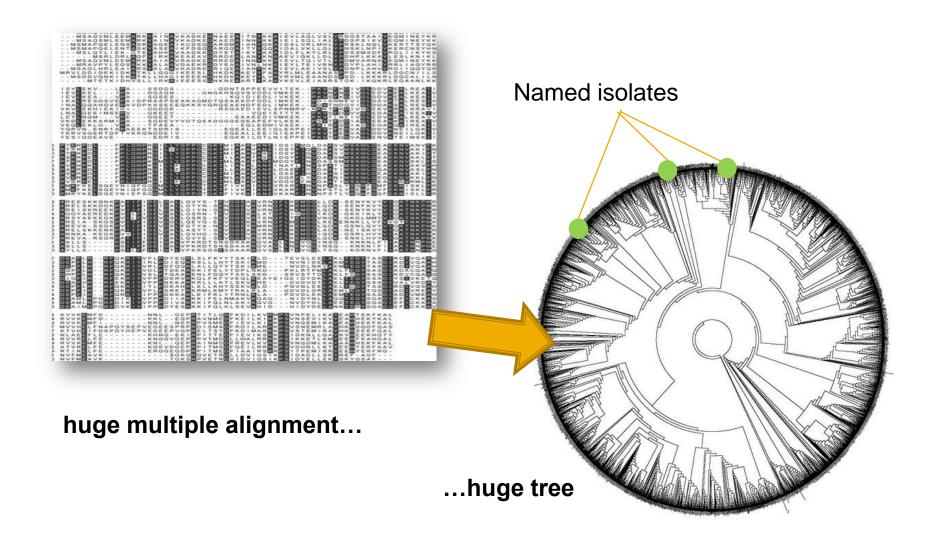
Large databases

- SSU sequences + taxonomy annotations
- Greengenes
 - 1.3M 16S sequences
 - Obsolete? Last updated May 2013, secondgenome.com
- SILVA
 - 1.8M 16S sequences
 - ~100k genera
 - 98% not named
 - Small fraction of extant species / strains (billions?)

Length & phylogenetic "resolution"

- Full-length sequences can identify species
 - If ~100% identical to known sequence
- 97% "rule" not reliable
 - Paralogs in one species can be as low as 89%
 - Different species can be >97%
- Short tags (V4) cannot resolve species
 - Different species may have identical V4 sequences
 - Genus resolution good, but not perfect
 - 10% of genera in RDP14 have same V4 as another genus
 - Even if only one 100% id hit, could be novel species

RDP, SILVA & GG taxonomies


Different nomenclatures

- RDP: Based on Bergey's
- GG: Based on NCBI
- SILVA: Based on LSPN
- Conflicts between sequence & taxonomy
- Example: *Escherichia* and *Shigella*
 - Sequence shows that these genera not monophyletic
 - GG: leaves genus & species blank
 - SILVA: new genus Escherichia-Shigella
 - RDP: new genus Escherichia/Shigella

SILVA & GG "taxonomies"

- Large majority are environmental
- Known only from sequence
- Taxonomy annotations are predictions!
- Manual + automated methods
- Error rates...?

GG & SILVA predictions

GG & SILVA predictions

Perfect alignment impossible

- Very hard to align across many phyla
- May not be possible / meaningful in hypervariable regions
- Especially GG
- NAST designed to introduce mis-alignents!
- Perfect tree prediction impossible
- Must be errors
 - Plausibly could be many

Taxonomy annotation errors

"Mathematics is the art of giving the same name to different things"

Henri Poincaré

"Taxonomy should not give the same name to different things"

Robert Edgar

Taxonomy annotation errors

Common name

- Identical name found in all systems (GG, SILVA & RDP)
- Most names are common
- Pair of databases
- Choose a rank, e.g. genus
- Identical sequences with common names
- If disagree, one annotation is wrong

GG & SILVA errors

GG-QIIME vs. SILVA-mothur

Rank	Common Names	Same Name	Different Name				
Phylum	29098	28616 (98.3%)	481 (1.7%)				
Class	24476	21592 (88.2%)	1201 (4.9%)				
Order	21919	17121 (78.1%)	2804 (12.8%)				
Family	15805	13141 (83.1%)	1428 (9.0%)				
Genus	7735	5352 (69.2%)	1868 (24.1%)				

Combined error rate:

24% genus9% family2% phylum

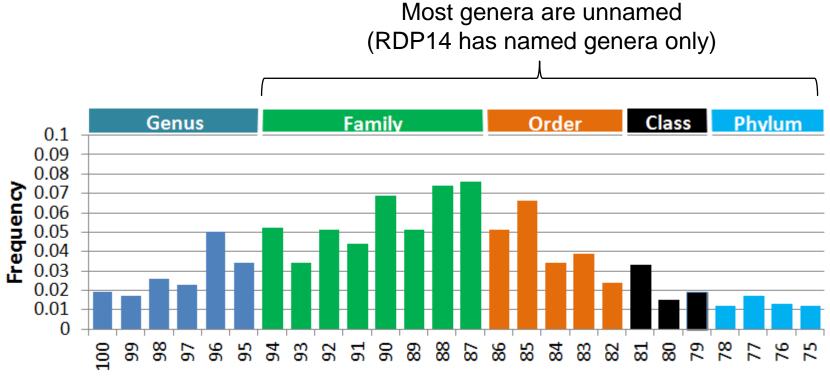
Disagreement implies error in one or both dbs. Probably just one

Resolve by comparing with RDP14

GG-QIIME and RDP14

Rank	Common Names	Same Name	Different Name				
Phylum	477	475 (99.6%)	2 (0.4%)				
Class	1761	1678 (95.3%)	27 (1.5%)				
Order	1786	1583 (88.6%)	79 (4.4%)				
Family	1545	1423 (92.1%)	78 (5.0%)				
Genus	1404	1253 (89.2%)	151 (10.8%)				

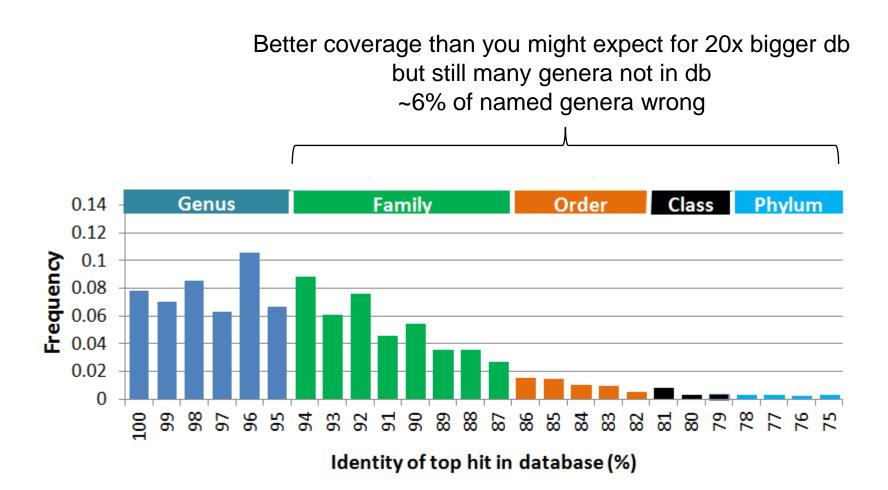
SILVA-mothur and RDP14

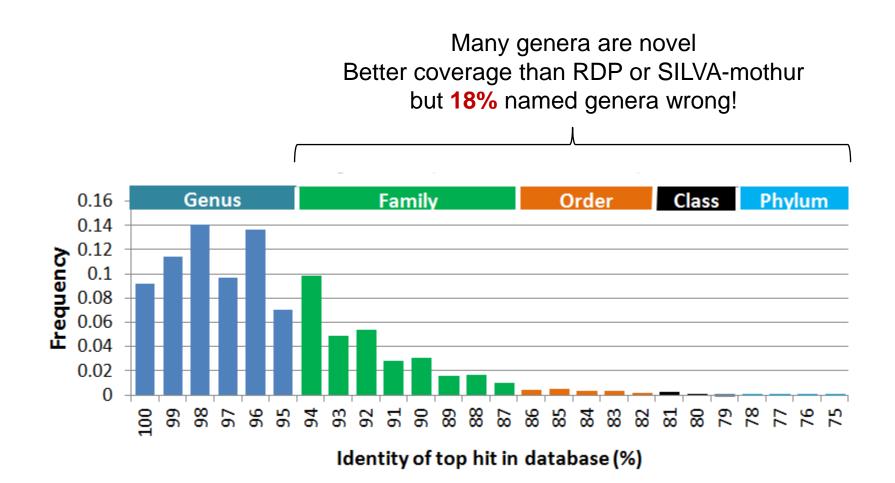

Rank	Common Names	Same Name	Different Name			
Phylum	1030	1028 (99.8%)	2 (0.2%)			
Class	4324	4299 (99.4%)	17 (0.4%)			
Order	3359	3148 (93.7%)	57 (1.7%)			
Family	4291	4070 (94.8%)	141 (3.3%)			
Genus	4510	4386 (97.3%)	12 (2.7%)			

 $GG \sim 3 - 4x$ more disagreements with RDP

Implies GG error rate at least $\sim 3x > SILVA$

SILVA ~6% genus errors GG ~18% genus errors!

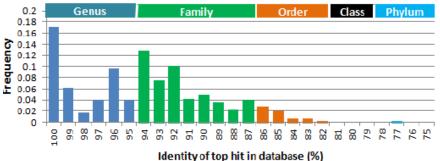

Soil OTUs vs. RDP14

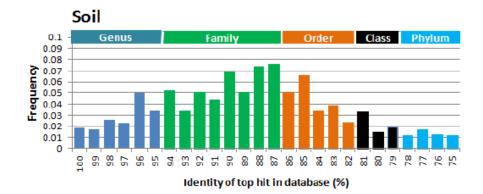

Identity of top hit in database (%)

V4 region unless otherwise stated

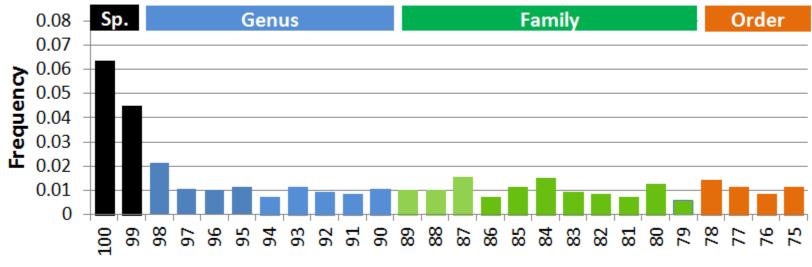
Soil OTUs vs. SILVA-mothur

Soil OTUs vs. GG-QIIME




RDP14 vs. soil and gut OTUs

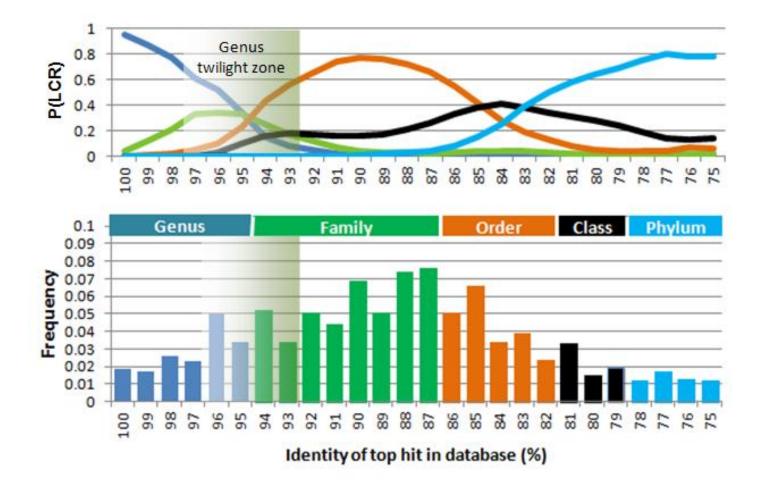
Identity of top hit in database (%)


Human gut

Similar story with fungal ITS

PipITS OTU identities War4, ITS1

Identity of top hit in database (%)

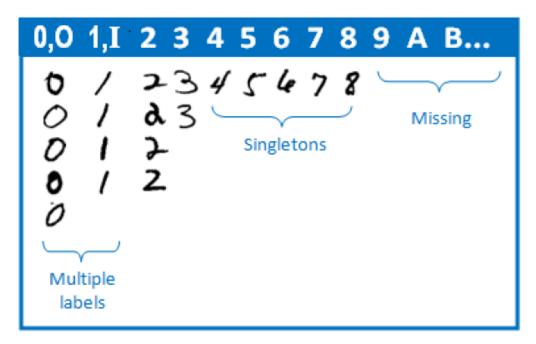

Lowest Common Rank

- Reference data is sparse
- Top database hit has 90% id
- Does it have same genus, family...?
 - What is Lowest Common Rank (LCR)
- Easy to find top hit(s)
 - All algorithms find the top hit(s), more or less
- Hard to predict LCR
 - This is the real challenge for taxonomy prediction

Twilight zone

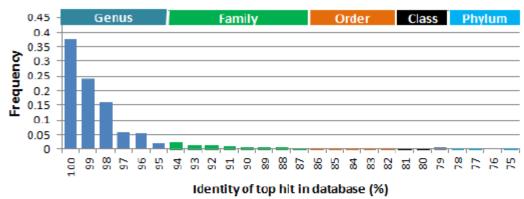
- Half of genera have only one sequence
 Impossible to find genus-specific features
- Top hit 95% identity
 - Same genus?
 - Hard / impossible to predict
 - Must choose between FPs and FNs
 - Algorithm should indicate confidence
- ~95% is genus "twilight zone"
 - Similar to 20% a.a. identity for protein homology

Twilight zone

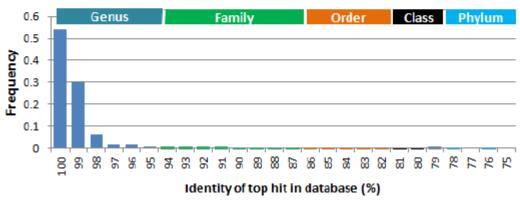


Prediction algorithms

Method	Confidence	Published / Documented?	Description				
RDP Classifier	Bootstrap	Yes	Naive "Bayesian" 8-mers				
UTAX	<i>P</i> -value (EPQ)	Yes 8-mer distances to top hit & nea neighbors at each rank					
GAST	No	Yes	Ad-hoc top hit consensus				
mothur-knn	No	No	?				
QIIME-uclust	No	No	?				
QIIME-blast	No	No	? (blast does not predict taxonomy)				
QIIME-sortmerna	No	No	?				
QIIME-RDP	Yes	Yes	RDP at 50% bootstrap (!)				

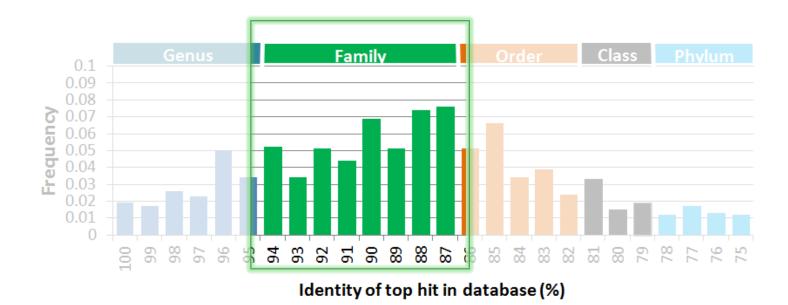

Taxonomy is not a textbook case

0 1	2	3	4	5	6	7	8	9
01	2	3	4	5	6	7	8	9
01							-	
01	2	3	4	5	6	7	8	9
01	2	3	4	5	6	7	8	9
01	2	3	4	5	6	7	8	9
01	2	3	4	5	6	7	8	9
01	2	3	4	5	6	7	8	9


Leave-x-out validation

Leave-one-out identities RDP14 (V4)

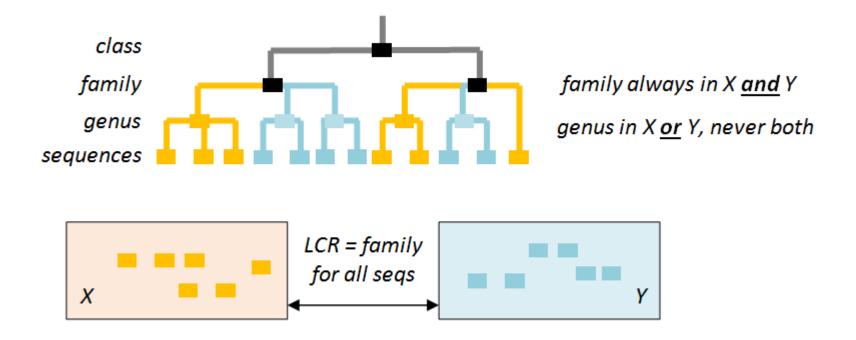
Avg. 4 seqs / genus Most ≥98% id Max accuracy < 100% due to singletons


Leave-10%-out identities Greengenes (V4)

Leave-10%-out (Bokulich *et al.* PeerJ) Most ≥99% id

Benchmark test

- Test with e.g. LCR = family
- Models OTUs with ~94% to 87% id with top hit



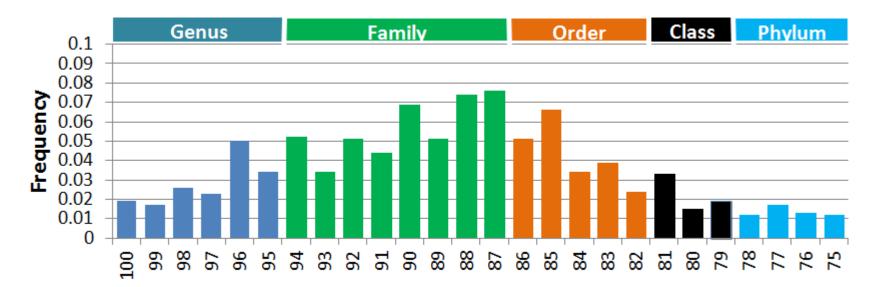
Benchmark test: "Rank split"

- Split trusted db (RDP14) into X_{rank} and Y_{rank}
- Example: LCR=family, make X_{family} and Y_{family}
- For each family, genus in X or Y (never both)
 - genus is NEVER known
 - family is ALWAYS known

Rank split construction

Method for making query - database pairs with known LCRs from trusted ref db.

Benchmark test


- On each rank split, e.g. family
- Measure sensitivity to family & above
 - Fraction families correctly predicted (all are known)
- Mis-classifications (FPs):
 - Known but wrong, e.g. predict wrong family
- Over-classifications (FPs):
 - Novel but classified, e.g. predicted a genus name

LCR frequencies

Genus=20% Family=45% C

Order=20% CI=8%

CI=8% Ph=7%

Estimated fraction of OTUs with LCR at each rank "Novelty profile" of the OTUs w.r.t. reference database

LCR frequencies

- If 100% have LCR=genus
 - Leave-one-out is a good test
- If 100% have LCR=family
 - Then test with query= X_{family} and db.=Y_{family}
- Realistic test
 - Mixture of all LCRs, weighted by LCR frequencies

Results

	Soil					Mous	e gut		Human gut			
		Genus Phylum ens EPQ Sens EPQ		Genus Sens EPQ		Phylum Sens EPQ		Genus Sens EPQ		Phylum Sens EPQ		
UTAX (0.9)	70.9	10.5	95.7	1.2	75.1	9.6	97.2	0.8	78.9	10.3	98.5	0.3
RDP (80)	80.5	17.4	92.7	0.0	82.2	16.0	95.3	0.0	83.7	17.2	97.5	0.0
QIIME-rdp (50)	87.9	40.3	95.6	1.2	89.0	35.9	97.1	0.8	90.1	37.7	98.5	0.5
QIIME-uc	80.0	45.4	78.3	0.1	80.9	39.0	86.7	0.1	81.7	40.0	91.8	0.1
QIIME-blast	89.7	77.7	91.2	5.6	91.0	61.6	94.5	3.8	92.2	58.6	97.0	2.1
QIIME-sm	77.0	41.9	78.9	0.0	77.8	35.5	87.1	0.0	78.6	36.3	91.9	0.0
GAST	89.1	70.4	97.0	2.8	90.4	55.0	98.0	1.9	91.6	51.7	99.0	0.9
mothur-knn	34.9	4.4	91.7	0.6	35.8	3.3	93.7	0.4	36.6	3.2	95.5	0.2