NGS READ PROCESSING STAMPS 2016

Robert Edgar

Independent scientist robert@drive5.com www.drive5.com

FASTQ files

Text file with four lines per read

1. Label 2. Sequence 3. + 4. Quals @M141:79:749142:1:1101:14941:1421 1:N:0:GTTATCCGTACA TACGTAGGTGGCAAGCGTTATCCGGAATTATTGGGCGTAAAGCGCGAGTAGGCGGTTTTTTA + =====--+55,55@@@EEA6>A.6>C7C>BFGG=AEC5+@EF=ED7+5CEF=ACDC55AE)5

Format not fully standardized

- Different conventions for representing Q scores as letters
- Software may have different max & min Q scores
- Typical is Q2 to Q40

Quality (Phred) scores

- Integer Q2 .. Q40
- Represents P_error, probability base is wrong
 - Q40: *P_error* = 0.0001
 - Q30: *P_error* = 0.001
 - Q20: *P_error* = 0.01
 - Q10: $P_{error} = 0.1$
 - Q3: $P_{error} = 0.5$
 - Q2: *P_error* = 0.66

99.9% good 99.9% good 99% good 10% wrong 50% wrong 66% wrong!!

Quality filtering

- Discard poor-quality data
- Poor quality = high probability of error(s)
 - Iow Q scores
- Genomics can mask out low-Q positions
 - e.g. for SNP-calling

Quality filtering

Amplicon sequencing different scenario

- Need pair-wise comparisons for most analysis
 - pairs of reads, or reads & database
 - to calculate identity or determine if sequences identical
- Masked / ambiguous positions (Ns) problematic
- Variable length (e.g. truncated at low Q) also problematic

OTU clustering

- "Harmful" reads >3% errors create spurious OTUs
- High diversity in harmful reads
- <u>Many</u> spurious OTUs even if harmful reads small fraction

Truncating at low Q is bad idea

Read quality often falls towards end of read
Popular (but bad!) to truncate when Q low

Do A and B have identical sequences?

If **Yes**, dubious tail gets high abundance If **No**, good prefix gets low abundance

Length trimming

- Similar/identical reads should be <u>globally</u> <u>alignable</u> with <u>few/no terminal gaps</u>
- Comparisons unambiguous
 - Cannot have A identical (or >97% similar) to prefix of B
- Unpaired reads: truncate to <u>fixed length</u>
 - Important for 454
 - Often not needed for Illumina
 - Sometimes trim low-quality tails

Global trimming

Full-length amplicons with varying length ok

- e.g. overlapping paired reads
- trim to primers ok
- no terminal gaps when same / closely related

Quality filtering methods

Minimum Q

- Ok if Q is large, e.g. Q≥20 (P_error=1%)
- Ok if don't truncate -- keep or discard
- Average Q, maybe over sliding window
 - Conceptual mistake -- averaging logarithms!?
 - Errors dominated by small Qs

🗵 QIIME filter

- Truncate () read if >3 <u>consecutive</u> bases with $Q \le 3$
- Q=3 means P_error = 50%
- Allows reads with many errors!

Quality filtering methods

PANDAseq method

- $t = \text{geometric mean of } P_correct along read \ge 0.6$
- *P_error* = 0.4
- Much too high, allows reads with many errors
- Better with higher t, but not as good as expected errors

Expected error filtering

G	Α	Т	Т	Α	С	Α	G
20	3	10	40	40	40	25	2

Expected errors

Expected errors

- Expected errors (E) in a read
- E = mean over large set with random errors according to Q scores
 - real-valued (because it's an average)
 - always > o
 - can be < 1</p>

Expected errors

- Surprisingly easy to calculate E
 Sum the error probabilities
 E = sum P_error
- Most probable number of errors E*
 - $E^* = \text{largest integer} \le E$
 - = floor(E)
- Proofs in Edgar & Flyvbjerg (2015).

Expected error filter

Discard reads with E>1

- Keep reads with E*=o
- Most probable number of errors = zero

Typical performance on MiSeq 2×250 V4

keeps 75%+ of the reads

- 2/3 of filtered reads are correct (zero errors)
- 1/3 have one or more bad bases

Expected error filter

- Works well if Q scores are accurate
- Illumina Q scores are pretty good
- 454 not so good
 - filtering not so effective
 - expected error filter still best method
- Max E=1 suggested default
 - Not a requirement! (note for comparative validation)
 - Larger *E* for less stringent filtering (more spurious OTUs)
 - Smaller E for very stringent filtering

Expected error filtering

- Critics: allege too stringent
 - high cost in sensitivity, diversity
- Reads are not lost!
 - Most filtered reads map to OTUs after clustering
 - Filtering is critically important to suppress spurious OTUs
- High sensitivity to rare species not possible
 - Contaminants, cross-talk...
 - Limit of resolution abundance > ~0.5% of reads

Expected vs. measured errors

Quality filter performance

QIIME and PANDAseq filters leave tens of thousands of reads with >3% errors, thousands of spurious OTUs

Paired read merging / assembly

Paired read merging

- Two observations of each base in overlap
- Should increase/decrease Q if match/mismatch

=

- Use Bayes' Theorem to get posterior P_error
 - Correct equations in Edgar & Flyvbjerg (2015)
 - Previous papers got this wrong!

Paired read assemblers

Program	Mean match Q error	Mean mismatch Q error	Random merge test	
BBmerge v8.82	-6.1	-0.5	Pass	
<u>COPE</u> v1.1.2	-15.3	13.6 (25% wrong sign)	Pass	
<u>FLASH</u> v1.2.11	-8.8	-0.4	Pass	
<u>fastq-join</u> Download 21 Nov 2015	-8.7	-0.3	Pass	
<u>mothur</u> v.1.36.1 Make.contigs	(Uses PANDAseq met recommends not to u	Fail (100% assembled) (May not be a problem if mothur SOPs are followed).		
PANDAseq v2.8	-21.6 (73% wrong sign)	-11.6 (20% wrong sign)	Fail (~70% assembled)	
<u>PEAR</u> v0.9.5	-1.3	15.11 (27% wrong sign)	Pass	
<u>SeqPrep</u> Dated 6 Jan 2015	7.3	-0.6	Pass	
USEARCH v8.1 fastq_mergepairs	0	0	Pass	

Do we need full overlap?

- V4 is ~250nt
- 2x250 PE reads give full overlap
 - Better error correction?
- Accurate OTUs with UPARSE on R2s only!
- Longer amplicons ok, e.g. V3-V4 (400nt)
 - better resolution

Dereplication

- Find the unique sequences in the reads
 - and their abundances
- Abundance is a very useful signal
 - Most abundant sequences almost certainly correct
 - unless low-Q truncated
 - Errors increasingly common at lower abundances
- Pool reads from <u>all</u> samples
 - Strongest abundance signal

Singletons

- Abundance = 1
- Random errors usually singletons
 - Not usually reproduced by chance
- Systematic errors may have ab. > 1
 - Polymerase errors & chimeras (amplified by PCR)
 - Sequencing error usually pretty random

Discard singletons

- After filtering, many reads with >3% errors
 - Sequencer error
 - Polymerase copying errors
 - Chimeras
 - Most of these are singletons
- Discard singletons before clustering
 - Necessary to minimize spurious OTUs
 - Most singletons map to OTUs after clustering, not lost!

Discard singletons

- Critics: allege high cost in sensitivity, diversity
 Effect on sensitivity minimal / meaningless
 - By definition, found <u>once</u> in <u>one</u> sample!
 - Ecologically irrelevant (or not possible to interpret)
- Sensitivity is < 100% with singletons</p>
 - Sampling effects, e.g. rare species missed
 - Primer mismatches ("universal" = ~80% 90%)
 - Some / many rare species missing regardless
- Diversity metrics like Chao1 nonsense for 16S

Delete primer-binding sequences

- PCR tends to substitute mismatches
- Not needed with many Illumina protocols
 - 16S / ITS primer-binding sequence not in read