MOCK COMMUNITIES STAMPS 2016

Robert Edgar

Independent scientist robert@drive5.com www.drive5.com

Mock communties

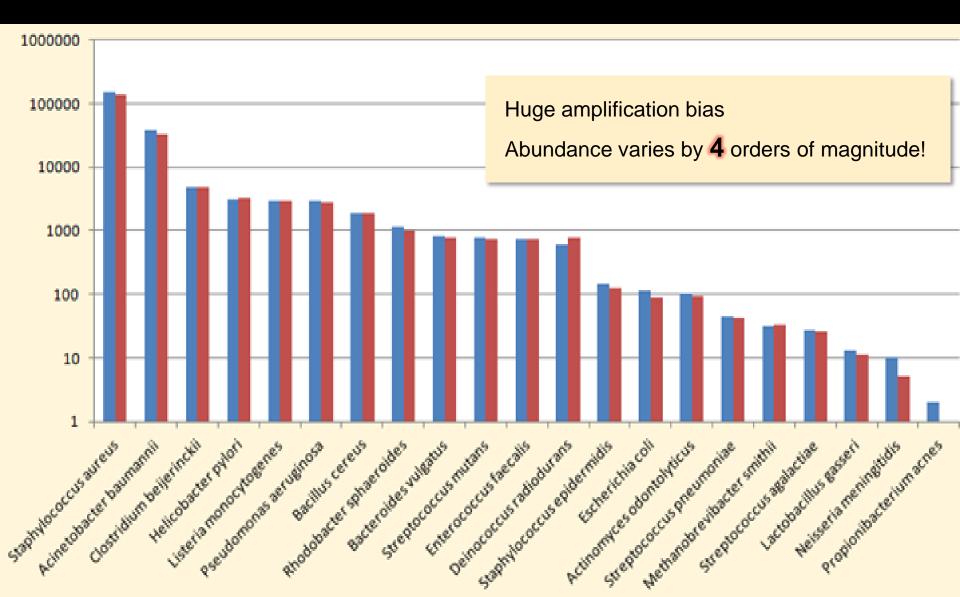
- Artificial sample, mix of known strains
- Typically 10 80 strains
 - HMP widely used for 16S, has 21
- Even: equal concentrations
 - cells, genome mass or 16S mass -- quite different!
- Staggered: range of abundances
- Extreme: species >97% identical
 - Validate denoising

Alice, mock turtle and griffyn

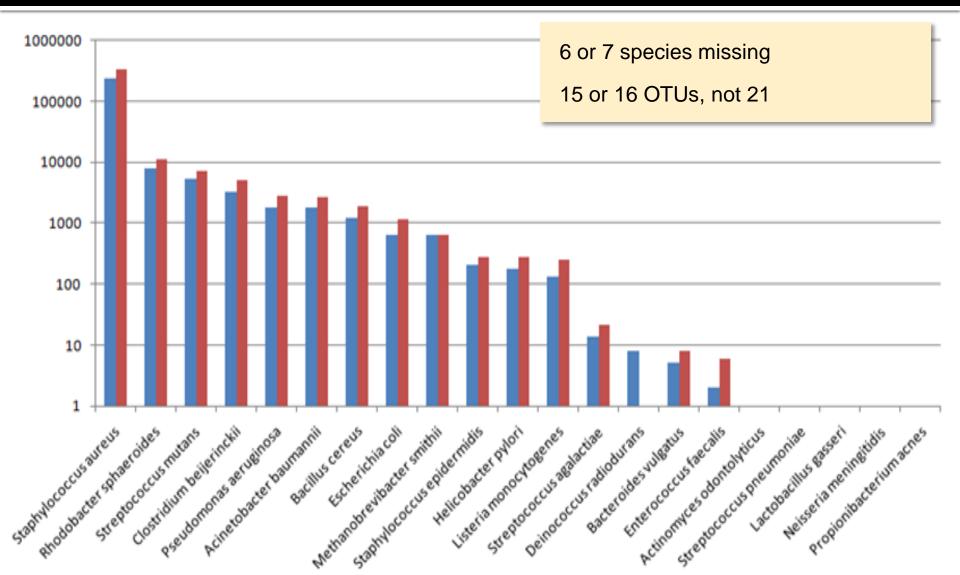
Mock case study #1

- MiSeq 2×250 V4
- Mock samples only
 - 2 Even, 2 Staggered

Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing


Nicholas A Bokulich^{1–3}, Sathish Subramanian⁴, Jeremiah J Faith⁴, Dirk Gevers⁵, Jeffrey I Gordon⁴, Rob Knight^{6,7}, David A Mills^{1–3} & J Gregory Caporaso^{8,9}

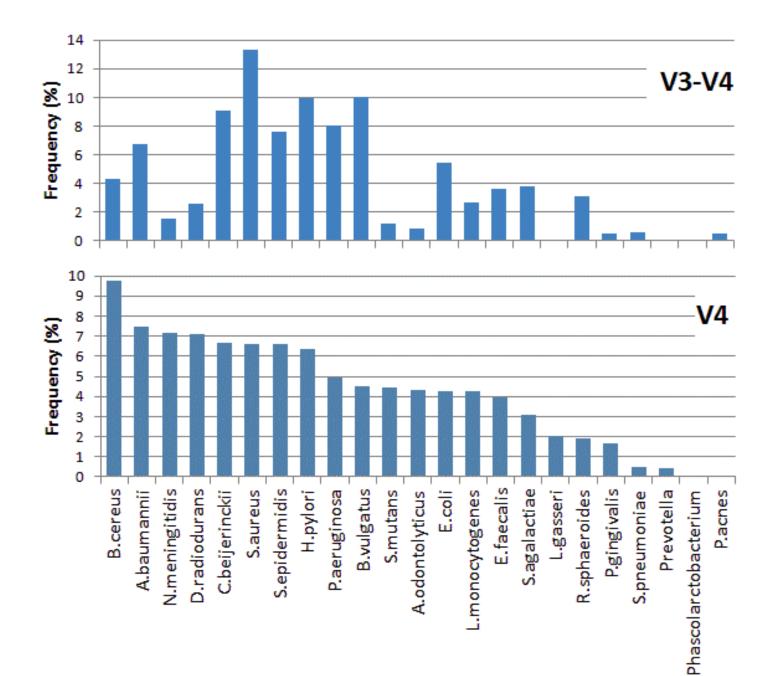
Contaminants


At least 26 contaminant species

- <97% to mock <u>and</u> not chimeric <u>and</u> 100% match to SILVA
- Cluster at 97% to minimize double-counting
- More contaminants than designed!
- Abundances 93, 73, 6, 5, 5, ... reads
 - Higher than some mock species
 - Mostly singletons

"Even" read abundances

"Staggered" read abundances


Mock case study #2

- MiSeq 2x250 V4
- Mock, Soil, Human gut, Mouse gut

Development of a Dual-Index Sequencing Strategy and Curation Pipeline for Analyzing Amplicon Sequence Data on the MiSeq Illumina Sequencing Platform

James J. Kozich,^a Sarah L. Westcott,^a Nielson T. Baxter,^a Sarah K. Highlander,^b Patrick D. Schloss^a

Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA^a; Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA^b

Re-analysis with UPARSE

- 2,350 OTUs in the mock samples
- Expected about 21... oops
- What the heck are they?
 - read errors, chimeras...??

Green -- mock L.monocytogenes.3 Orange -- other Faecalibacterium

OTU	Mock	Soil	Human	Mouse	%id	Refseq
OTU_6	730490(13.69%)	587(0.01%)	562(0.01%)	897(0.01%)	100%	S.aureus.2
OTU_8	522856(9.80%)	1668(0.02%)	388(0.01%)	3(0.00%)	100%	B.cereus.9
OTU_11	405378(7.60%)	345(0.01%)	307(0.00%)	37(0.00%)	100%	A.baumannii.4
OTU_13	388965(7.29%)	331(0.00%)	318(0.00%)	0(0.00%)	100%	B.vulgatus.5
OTU_14	385642(7.23%)	324(0.00%)	280(0.00%)	0(0.00%)	100%	D.radiodurans.3
OTU_15	360000(6.75%)	581(0.01%)	329(0.00%)	2(0.00%)	100%	C.beijerinckii.10
OTU_16	344151(6.45%)	220(0.00%)	278(0.00%)	1(0.00%)	100%	H.pylori.2
OTU_17	267306(5.01%)	638(0.01%)	217(0.00%)	10(0.00%)	100%	P.aeruginosa.3
OTU_12	242303(4.54%)	142(0.00%)	430082(6.00%)	2528(0.04%)	100%	B.vulgatus.5
OTU_19	240857(4.51%)	181(0.00%)	176(0.00%)	47(0.00%)	100%	S.mutans.4
OTU_20	232806(4.36%)	130(0.00%)	258(0.00%)	1(0.00%)	100%	A.odontolyticus.2
OTU_18	230458(4.32%)	7223(0.11%)	880(0.01%)	30944(0.44%)	100%	E.coli.5
OTU_21	229180(4.29%)	207(0.00%)	192(0.00%)	2(0.00%)	100%	L.monocytogenes.3
OTU_23	215401(4.04%)	173(0.00%)	171(0.00%)	18(0.00%)	100%	E.faecalis.2
OTU_26	167749(3.14%)	69(0.00%)	117(0.00%)	0(0.00%)	100%	S.agalactiae.4
OTU_30	108607(2.04%)	32(0.00%)	78(0.00%)	0(0.00%)	100%	L.gasseri.4
OTU_29	104428(1.96%)	247(0.00%)	69(0.00%)	0(0.00%)	100%	R.sphaeroides.4
OTU_31	89937(1.69%)	60(0.00%)	71(0.00%)	0(0.00%)	100%	P.gingivalis.3
010_00	27287(0,51%)	80(0.00%)	74(0.00%)	259(0.00%)	100%	S.pneumoniae.2
OTU_1	16093(0,20%)	127(0.00%)	3244970(45.26%)	13110(0.19%)	99%	AB064923 S000768314 Provotella
OTU_1152	6894(0.13%)	39(0.00%)	1431022(19.96%)	6920(0.10%)	98%	AB064923 S000768314 Provotella
OTU_10	2203(0.04%)	5(0.00%)	429297(5.99%)	1275(0.02%)	100%	X72865 S000013701 Phascolarctobacterium
OTU_1159	733(0.01%)	0(0.00%)	1(0.00%)	9(0.00%)	100%	P.acnes.3
OTU_8494	657(0.01%)	1(0.00%)	0(0.00%)	0(0.00%)	97%	S.mutans.1
OTU_38	499(0.01%)	0(0.00%)	86037(1.20%)	190(0.00%)	100%	AJ413954 8000128478 Faecalibacterium
OTU_36	404(0.01%)	0(0.00%)	71575(1.00%)	465(0.01%)	100%	AY126616 S000546342 Bacteroides
OTU_22	335(0.01%)	1000(0.01%)	71623(1.00%)	203334(2.89%)	100%	AB021164 S000008023 Bacteroides
OTU_34	317(0.01%)	0(0.00%)	63445(0.88%)	122(0.00%)	100%	AB238928 S000650592 Parabacteroides
OTU_33	309(0.01%)	243032(3.64%)	3(0.00%)	480(0.01%)	100%	GG4402730 Acidobacteria-6
OTU_39	287(0.01%)	3(0.00%)	54256(0.76%)	288(0.00%)	100%	GG116083 Rikenellaceae

MiSeq cross-talk

- Spurious OTUs in mock samples
- MiSeq index read errors
- ~0.5% of reads assigned to wrong sample
- QIIME Illumina filter: discard OTUs < 0.005%</p>

Bokulich *et al.* (2013) *Nat Meth*

Richness is a poor metric

- Kozich et al. and Bokulich et al. did not analyze mock OTU sequences
- Only the number of OTUs
 - a.k.a. richness or alpha diversity

Richness is a poor metric

"Correct" nr. OTUs can be > or < nr. strains</p>

- More: Contaminants and cross-talk
- More: Paralogs <97% identical</p>
- Less: Species missing, e.g. primer mismatches
- Less: Strains >97% identical
- Right number for wrong reason
 - **Plus** spurious OTUs due to cross-talk, chimeras, errors
 - Minus missing strains due to bias, mismatches
 - Tune parameters on mock, results may not generalize
- Should identify and classify sequences!

Mock reference sequences

- Sequence analysis requires mock ref. db.
 - All the mock 16S sequences, and nothing but
- No such database exists, as far as I know
 - HMP mock has a ref db in circulation
 - Not published or explained
 - Has all known sequences for the species(?)
 - not just the ATCC strains
- Missing resource
 - would be useful contribution, especially for HMP
 - might be possible using finished genomes?

Mock is an essential control

- Always include a mock sample as a control
- Make OTUs from reads for all samples
- Validate mock OTUs by aligning to ref. seqs.
 - Not taxonomy prediction (RDP, UTAX) -- low resolution
- Check for chimeras, contaminants, cross-talk
- USEARCH v9 (coming soon)
 - annotate command compares to mock ref & SILVA
 - reports good sequences and chimeras
 - hard to implement (fake models)