


### **Robert Edgar**

Independent scientist robert@drive5.com www.drive5.com

### **OTU analysis**



# Naive clustering

- Mock community with 20 species
- Cluster reads at 97% using UCLUST
- Thousands of "OTUs"
  - terrible result...
  - clusters are noise!



# The magic number 97

### Q. Why cluster at 97%?



a) Everybody does it

(true)



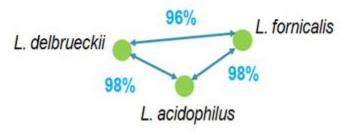
b) 97 is a happy prime

(true -- look it up!)

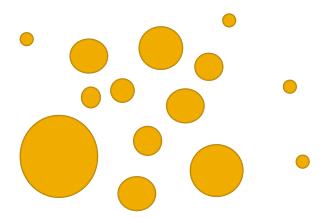


c) 97% clusters are species

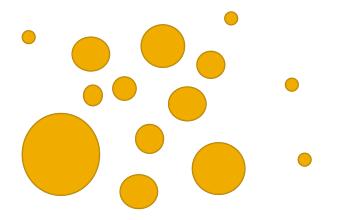
(not true)

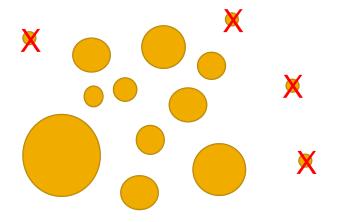

# 97% is not species

### Reasonable rule of thumb for full-length 16S


- Paralogs in a single species usually >97%
  - But paralogs can be as low as 89%
- Different strains usually >97%
- Different species usually <97%</li>
  - But not always, e.g. *Lactobacillus*

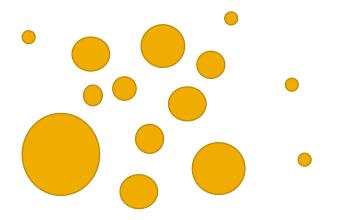


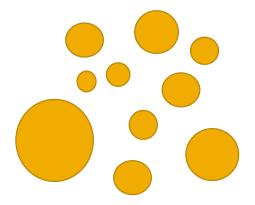

- Different species often have identical V4 tags
- 10% genera in RDP14 have pair of identical V4s





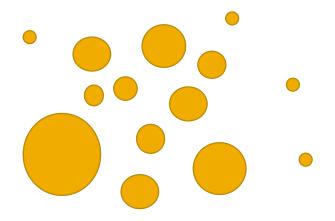


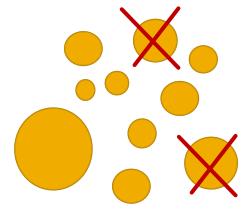


REALITY Ecologically distinct strains, size of blob = abundance





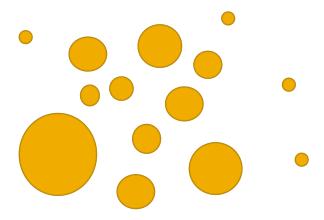

Reality


Rare strains not sampled





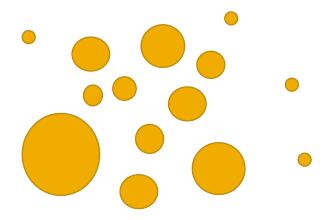

Reality


Rare strains not sampled



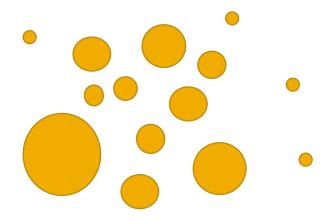


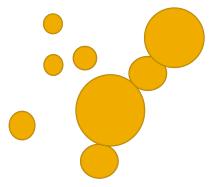
Reality


10-15% don't match "universal primers"



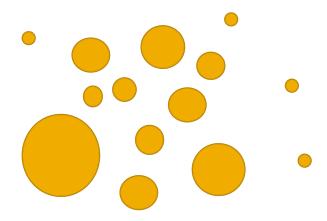


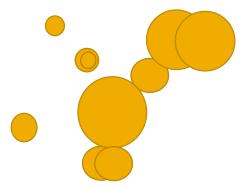

Reality


10-15% don't match "universal primers"



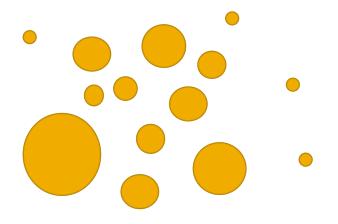
Reality


16S copy number varies from 1 to 15 or so

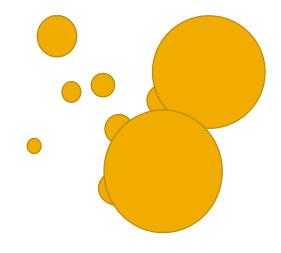




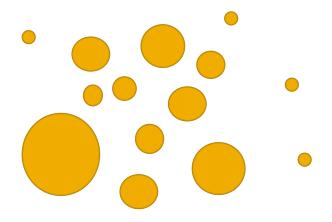

Reality


16S copy number varies from 1 to 15 or so

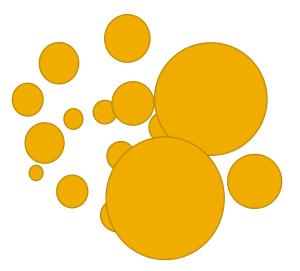




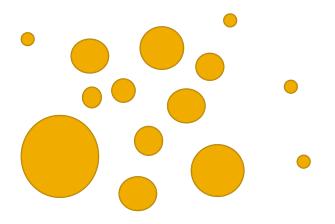

Reality


Clusters **split** (paralogs <97% similar) and **merge** (species >97% similar)

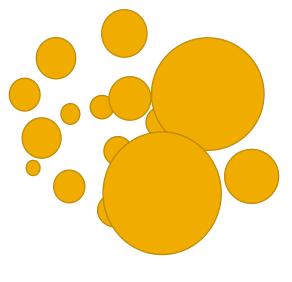



Reality




Amplification bias




Reality



Polymerase errors, chimeras, read errors, contaminants



Reality



"OTUs"

### Lump or split?

- One genome can contain many 16s genes
  - from one to 10+ typical
- Paralogs may be <100% identical</p>
  - as low as 89%
- Any clustering %id will lump and split
  - Even in ideal scenario where no errors
- Clustering %id often motivated by "species"
  - I disagree

### Lump or split?

- Lumping can obscure biological signals
   Splitting process information
- Splitting preserves information
  - e.g., better to distinguish strains than lump together
- Given all correct sequences
  - no reason to cluster
  - can estimate number of species from number of uniques
    - if needed, but usually not a very interesting or useful question
- Answer: split!
  - Resolve as many distinct genes as possible

### **Ideal analysis**

- Input: Reads
- Output: Biological sequences
  - All biological sequences
  - Nothing but biological sequences

### Achievable analysis

- Find subset of correct sequences >3%
  - Because ~3% is practical limit for detecting errors
- Sane motivation for 97% clustering
- Should resolve as much detail as possible
  - For any gene 16S, ITS, COI...
  - Regardless of typical intra-species variation
  - Individuals, strains, species, genera... are all informative
  - …and are valid OTUs!

### Future is (almost) here!

- Denoising can resolve sequences to ~1 diff
  - DADA2
  - UNOISE2 (coming soon in USEARCH v9)
- Other high-resolution methods
  - "oligotyping" (Eren *et al*. ISME 2015)
  - "sub-OTU resolution" (derep.) (Tikhonov et al. ISME 2014)
- Denoising close to ideal analysis
  - all biological sequences, and nothing but

### Reads $\rightarrow$ OTUs with USEARCH

#### Pre-process reads

- Paired read assembly (with updated Q scores)
- Expected error filtering (suggest E < 1, E\*=0)</li>
- Discard singletons (optional, but highly recommended)
- Dereplicate -- find uniques & abundances
- Sort uniques by decreasing abundance
- Clustering: UPARSE-OTU algorithm
  - Edgar *Nat. Meth.* 2013
  - cluster\_otus command

#### drive5.com/uparse

(i) www.drive5.com/uparse/

Home

C Q Search

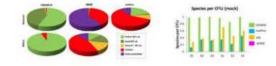

Software Services About Contact

#### **UPARSE OTU clustering**

UPARSE has been cited by **668 papers** <u>Google scholar</u> Last updated 24 Jul 2016

#### Download USEARCH Documentation Support Data analysis service

USEARCH Ultra-fast sequence analysis

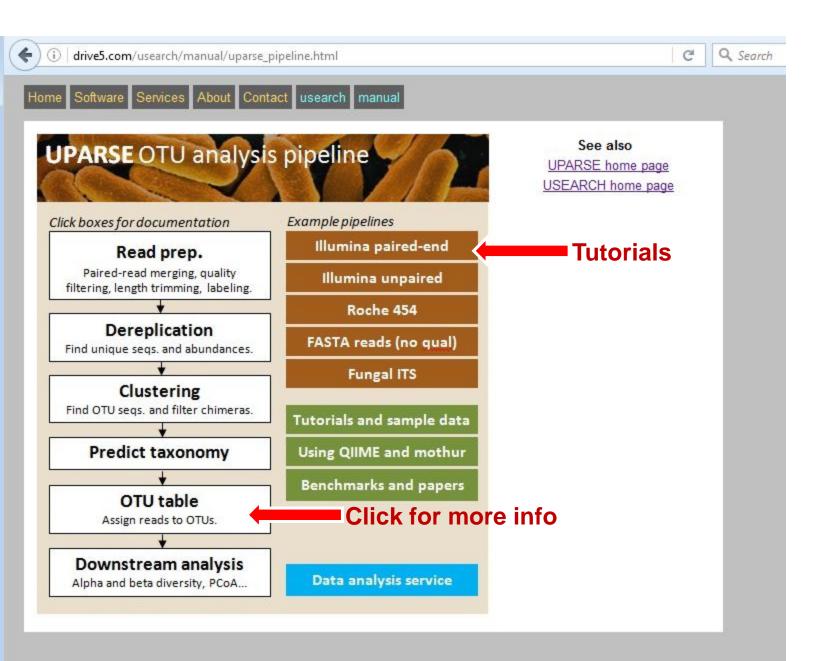



#### High-accuracy, high-throughput OTU clustering

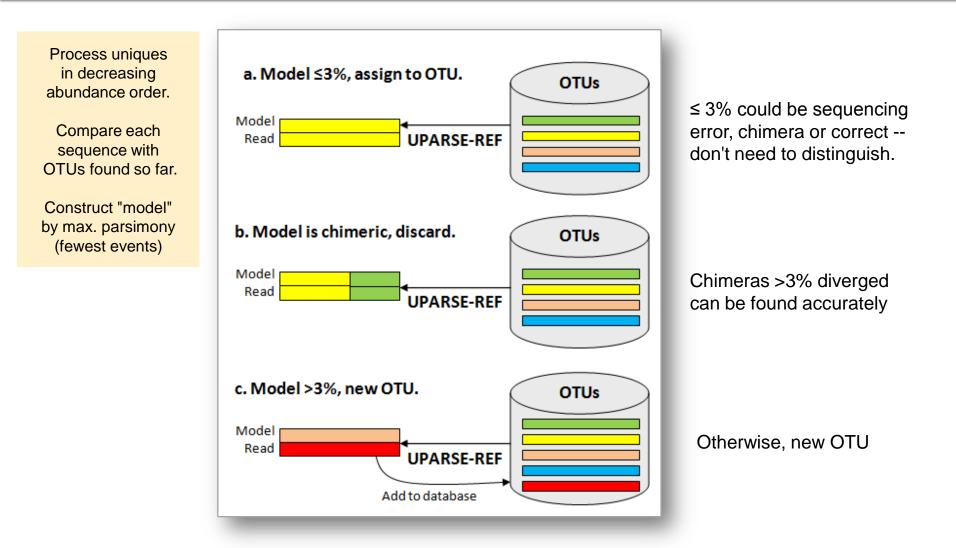
UPARSE is a method for generating clusters (OTUs) from next-generation sequencing reads of marker genes such as 16S rRNA, the fungal ITS region and the COI gene. The clustering method itself is the <u>UPARSE-OTU</u> algorithm, implemented as the <u>cluster\_otus command</u> in <u>USEARCH</u>. To run UPARSE in practice, you need to run a <u>pipeline</u> of scripts and USEARCH commands.

#### **Benchmark tests**

According to results published in *Nature Methods*, UPARSE generates OTUs that are far superior to state-of-the-art methods including QIIME, mothur and AmpliconNoise on mock community tests. OTU representative sequences are more accurate predictions of biological sequences, and the number of OTUs are much closer to the number of species.

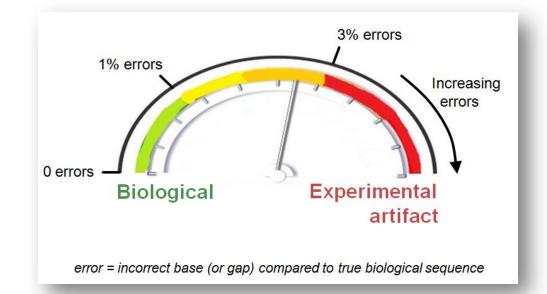



#### Reference


Edgar, R.C. (2013) UPARSE: Highly accurate OTU sequences from microbial amplicon reads, *Nature Methods* [Pubmed:23955772, dx.doi.org/10.1038/nmeth.2604].

UPARSE saved my PhD. I was struggling with spurious OTUs in my mock communities. I've tried QIIME and Amplicon Noise, with many different parameters, and I always got something like 100 OTUs. With UPARSE I get 24. Thank you!

Igor Stelmach Pessi University of Liège



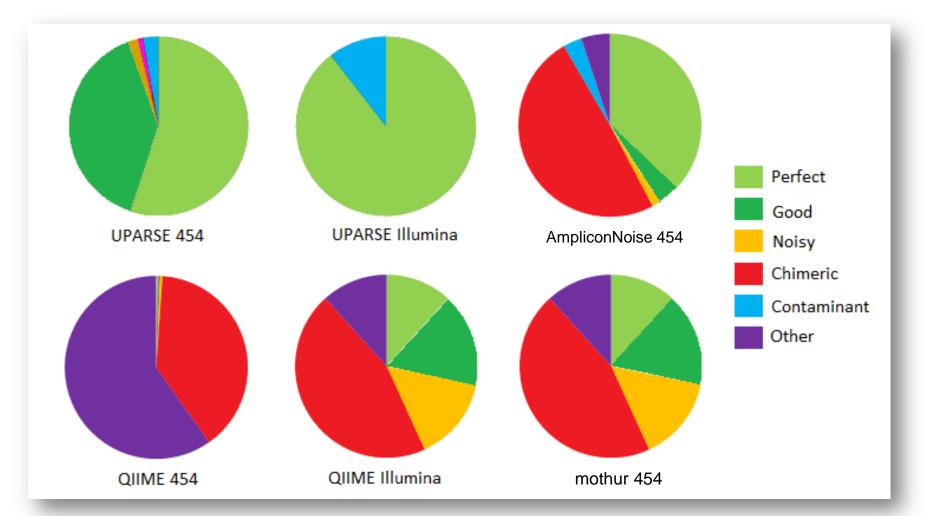

### **UPARSE-OTU**



### **Benchmark test**

- OTUs should be biological sequences
- Other criteria are possible, perhaps...
  - but should be clearly defined!
  - Nr. OTUs = nr. species popular but <u>not valid</u>




### **OTU classification**

| Color | Category    | Description                                                                           |  |  |  |  |  |
|-------|-------------|---------------------------------------------------------------------------------------|--|--|--|--|--|
|       | Perfect     | 100% identical to biological sequence.                                                |  |  |  |  |  |
|       | Good        | ≥99% identical to biological sequence.                                                |  |  |  |  |  |
|       | Noisy       | ≥97% identical to biological sequence.                                                |  |  |  |  |  |
|       | Chimera     | "Bad" chimera >3% from biological sequence                                            |  |  |  |  |  |
|       | Contaminant | Sequence found in large ref. db.                                                      |  |  |  |  |  |
|       | Other       | None of the above. Could be a novel contaminant, or much more likely have >3% errors. |  |  |  |  |  |

### **16S mock community data**

- HMP mock communities
- 21 species
- Even and Staggered mixes
- 454 Titanium and Illumina MiSeq 2×250
- Community & ref db. by Haas *et al.* 
  - Chimeric 16S rRNA sequence formation and detection in Sanger and 454-pyrosequenced PCR amplicons. *Genome res.* (2011)

### **Results on HMP mock datasets**



Edgar Nat. Meth. (2013)

### **OTU table**

# Matrix of OTUs vs. samplesValue is nr. of reads

|      | Sample1 | Sample2 | Sample3 |  |
|------|---------|---------|---------|--|
| Otu1 | 1,023   | 455     | 992     |  |
| Otu2 | 324     | 622     | 12      |  |
| Otu3 | 871     | 29      | 321     |  |
|      |         |         |         |  |

### **QIIME "classic" tabbed text**

Tab-separated text Rows are OTUs, columns are samples Simple, intuitive and convenient Use cut, grep etc., load into spreadsheet...

| AOTH TD | FOR   | E0D4 44 | E00440 | E00440 | FODAAA | ROD4 45 | EOD446 | E0.04.47 |
|---------|-------|---------|--------|--------|--------|---------|--------|----------|
| #OTU ID | F 3D0 | F3D141  | F3D142 | F3D143 | F3D144 | F3D145  | F3D146 | F3D147   |
| OTU 6   | 749   | 535     | 313    | 372    | 607    | 849     | 493    | 2025     |
| OTU_25  | 29    | 57      | 14     | 2      | 14     | 22      | 16     | 127      |
| OTU_1   | 613   | 497     | 312    | 247    | 472    | 719     | 349    | 1720     |
| OTU_8   | 426   | 378     | 255    | 237    | 382    | 627     | 330    | 1417     |
| OTU_31  | 149   | 38      | 10     | 19     | 25     | 21      | 43     | 31       |
| OTU_2   | 366   | 392     | 327    | 185    | 313    | 542     | 248    | 1367     |
| OTU_7   | 196   | 370     | 92     | 107    | 48     | 155     | 74     | 105      |
| OTU_10  | 46    | 169     | 87     | 109    | 171    | 209     | 120    | 864      |
| OTU_80  | 26    | 6       | 0      | 1      | 4      | 8       | 18     | 11       |

### mothur "shared" file

Tab-separated text Rows are samples ("groups"), columns are OTUs

| 1 - 1 - 1 | o      |         | OTT C | OTT OF | OTT A | OTT O | OTTL 0.1 | OTT O | OWNER OF | 0777 1.0 | OTTL O.O. |
|-----------|--------|---------|-------|--------|-------|-------|----------|-------|----------|----------|-----------|
| label     | Group  | numOtus | OTU_6 | OTU_25 | OTU_1 | OTU_8 | OTU_31   | OTU_2 | OTU_7    | OTU_10   | OTU_80    |
| usearch   | F3D0   | 9       | 749   | 29     | 613   | 426   | 149      | 366   | 196      | 46       | 26        |
| usearch   | F3D1   | 9       | 85    | 9      | 441   | 140   | 115      | 372   | 210      | 74       | 14        |
| usearch   | F3D141 | 9       | 535   | 57     | 497   | 378   | 38       | 392   | 370      | 169      | 6         |
| usearch   | F3D142 | 9       | 31.3  | 14     | 312   | 255   | 10       | 327   | 92       | 87       | 0         |
| usearch   | F3D143 | 9       | 372   | 2      | 247   | 237   | 19       | 185   | 107      | 109      | 1         |
| usearch   | F3D144 | 9       | 607   | 14     | 472   | 382   | 25       | 313   | 48       | 171      | 4         |
| usearch   | F3D145 | 9       | 849   | 22     | 719   | 627   | 21       | 542   | 155      | 209      | 8         |
| usearch   | F3D146 | 9       | 493   | 16     | 349   | 330   | 43       | 248   | 74       | 120      | 18        |
| usearch   | F3D147 | 9       | 2025  | 127    | 1720  | 1417  | 31       | 1367  | 105      | 864      | 11        |
|           |        |         |       |        |       |       |          |       |          |          |           |

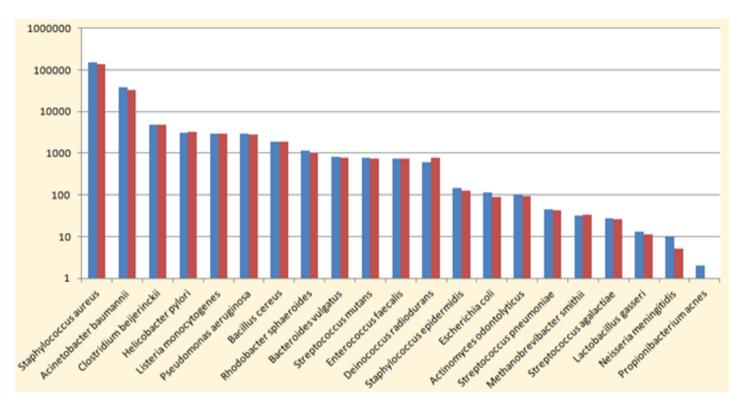
### BIOM v1 (JSON)

```
"id":null,
"format": "Biological Observation Matrix 0.9.1-dev",
"format url": "http://biom-format.org/documentation/format versions/biom-1.0.html",
"type": "OTU table".
"generated by": "QIIME revision 1.4.0-dev",
"date": "2011-12-19T19:00:00",
"rows":[
        {"id":"GG OTU 1", "metadata":null},
        {"id":"GG_OTU_2", "metadata":null},
        {"id":"GG OTU 3", "metadata":null},
        {"id":"GG_OTU_4", "metadata":null},
        {"id":"GG_OTU_5", "metadata":null}
   1,
"columns": [
        {"id":"Sample1", "metadata":null},
        {"id":"Sample2", "metadata":null},
        {"id":"Sample3", "metadata":null},
        {"id":"Sample4", "metadata":null},
        {"id":"Sample5", "metadata":null},
        {"id":"Sample6", "metadata":null}
   1,
"matrix type": "sparse",
"matrix element type": "int",
"shape": [5, 6],
"data":[[0,2,1],
        [1,0,5],
        [1,1,1],
```

Text, but complex Hard to work with in scripts Can't use cut, grep, awk...

### BIOM v2 (HDF5)

- Totally unrelated to BIOM v1 format
- Not text, opaque binary format
- Motivation: huge OTU tables
  - e.g. Earth Microbiome Project




### **OTU table values**

- Number of reads
  - "Raw"
  - Sub-sampled
    - e.g. to same number reads / sample
  - Rarefied
  - Normalized
- Frequencies
- No standards
  - Minimal software compatibility

### Read abundance vs. cells

#### Nr reads does not predict cell abundance



Read abundance for Even(!) mock community (Bokulich et al. 2013)

### Metadata

- Taxonomy predictions
- Sample information
  - Healthy / diseased
  - Time / date, location...
  - Temperature, salinity, phase of moon...
- No standards, no software compatibility

### Make OTU table with USEARCH

- Clustering gives one sequence for each OTU
  - "Representative sequence", "centroid"
- Align <u>unfiltered</u> reads to OTU sequences
  - database search (usearch\_global command)
  - if ≥97%, assign to closest OTU
  - recovers most low-quality & singleton reads
  - almost all unmapped reads have many errors / chimeras
- Outputs one or more formats
  - QIIME classic, mothur shared and / or BIOM v1