

http://drive5.com/otupipe

robert@drive5.com

Version 1.1

August 19, 2011

Introduction
The otupipe script creates OTUs from next-generation sequence reads for single-region

experiments such as 16S and ITS. Otupipe is a bash script, so you must have a bash shell

installed. If you're using Windows, you can run otupipe under Cygwin.

Designed for 454 fixed-region sequencing
Version 1.1 is designed for reads generated by Roche 454 sequencing of a region of a gene

extracted from a fixed pair of primers. Typically the gene is 16S, but this script should also work

well for other regions such as ITS.

Using otupipe with Illumina
Experiments using Illumina sequencing on the 16S gene appear to show that error rates are much

higher than the rates found in genome resequencing. The reasons for this are not understood, and

to the best of my knowledge no effective denoising / error-correction solution for Illumina has

been published for this type of experiment. Otupipe probably works at least as well as any other

solution for generating OTUs from Illumina reads. I suggest setting the MINSIZE option to a

much larger value, perhaps something like 100 to 1000, and keeping only the largest OTUs,

perhaps with a minimum size of 5000 to 10000.

USEARCH
Otupipe requires USEARCH, so you should install this first if you don't already have it.

Installation
Otupipe is distributed as a tarball named something like otupipe1.1.123.tz, where 1.1.123 is the

version number. To extract the files, use:

tar -zxvf otupipe1.1.123.tz

This creates a sub-directory otupipe1.0.123 with the following files:

otupipe.bash

fasta_number.py

http://drive5.com/otupipe
mailto:robert@drive5.com
http://cygwin.org/
http://drive5.com/usearch/

— 2 —

Before running otupipe.bash, you should set up your environment as explained in the following

table.

Action Description

Install USEARCH. The otupipe script requires USEARCH. To install, download the

binary file and install in a directory that will be accessible from your

bash $PATH when you run otupipe.

fasta_number.py in $PATH. The fasta_number.py script must be accessible through your bash

$PATH when you run otupipe.bash. You should copy

fasta_number.py to a directory that is in your $PATH variable, or

update your $PATH to include the otupipe directory.

Set $u. The $u environment variable must be set to the name or path of your

USEARCH binary. To verify that it is set correctly, try this

command:
$u --version

Set $UCHIME_REFDB. The $UCHIME_REFDB database must be set to the path name of the

reference database to use for UCHIME in reference database mode.

You don't need to install UCHIME separately; USEARCH has its

own implementation of the UCHIME algorithm.

For a reference database, I generally recommend the 'gold' set

distributed with ChimeraSlayer. For convenience, a copy of the gold

set is available for download at http://drive5.com/otupipe, but I

recommend checking the ChimeraSlayer page to see if a more recent

version is available.

Example:
export UCHIME_REFDB=/public/otupipe/gold.fa

Basic usage
The otupipe script requires two arguments: an input file in FASTA format containing quality-

filtered reads and the name of a directory to contain the output files; this directory will be created

if it does not already exist. For example:

otupipe.bash reads.fasta outdir [existing_otus.fasta]

http://drive5.com/usearch/
http://drive5.com/usearch/
http://drive5.com/usearch/
http://drive5.com/uchime
http://microbiomeutil.sourceforge.net/
http://drive5.com/otupipe
http://microbiomeutil.sourceforge.net/

— 3 —

Output files
Three output files are created, as described in the following table.

Filename Description

otus.fa FASTA file containing one representative sequence for each OTU. Sequences are

named OTU_1, OTU_2... up to the number of OTUs.

chimeras.fa FASTA file containing representative sequences for chimeras found in the reads.

This file is clustered at 97% by default to reduce redundancy in a similar way to

OTUs. Sequences are named CHIMERA_1, CHIMERA_2 etc.

readmap.uc File in UCLUST format classifying reads as OTU, chimera or unknown.

The readmap.uc file
The readmap.uc file is generated by using the input file (reads) as a query against a database

containing sequences from the otus.fa and chimeras.fa files. The UCLUST format is described in

the USEARCH manual.

A UCLUST file is a tab-separated text file with one record per line. The readmap.uc file has one

line for each read; either a hit (H) or no match (N) record. Most reads will match either an OTU

or a chimera (H records); a small fraction of the reads will fail to match (N records). Reads that

do not match are outliers that cannot be reliably classified. They might be rare biological

sequences, or more likely they have errors due to PCR amplification or sequencing error.

Example readmap.uc records
UCLUST files have ten fields. Here are some example records.

Type
1

Cluster
2

Length
3

PctId
4

Strand
5

Lo
6

Hi
7

Alignment
8

Label
9

Target
10

H 97 224 97.3 + 0 0 224M5I FV9NWLF01B7XBX CHIMERA_21

H 0 254 100.0 + 0 0 254M FV9NWLF01ENNCH OTU_1

H 180 251 97.6 + 0 0 18MI233M FV9NWLF01EU5SK CHIMERA_104

H 12 264 99.6 + 0 0 264MI FV9NWLF01DYX6E OTU_13

H 169 250 100.0 + 0 0 250M FV9NWLF01BUPFU CHIMERA_93

H 1 242 100.0 + 0 0 242M2I FV9NWLF01C3TV5 OTU_2

N * 245 * * * * * FV9NWLF01DT3FI *

The most relevant fields are field 1 which is H (hit) or N (no match), field 4, which gives the

identity of the match (≥ the $PCTID_BIN parameter, which defaults to 97), field 9 which is the

read label, and field 10 which is the label of the closest representative sequence (OTU_n or

CHIMERA_n).

Typically you will need to convert the readmap.uc file to a different format for downstream tools

such as QIIME or mothur that perform phylotyping and population analysis, e.g., compute alpha

and beta diversities. The UCLUST format is designed to be easy to parse, so it should be

straightforward to write a file format conversion script in Perl, Python etc. If you need help with

this, by all means contact me.

http://www.qiime.org/
http://www.mothur.org/
mailto:robert@drive5.com

— 4 —

User-settable parameters
Parameters can be changed by setting environment variables before running otupipe.bash.

Supported parameters are described in the following table.

Parameter Default Description
MINSIZE 4 Discard clusters < MINSIZE in error correction round.

Small clusters are more likely to be noise. You can

reduce this value if it is important not to lose rare

biological sequences, but this will typically produce

more spurious OTUs.

PCTID_ERR 97 Identity threshold for error correction.

PCTID_OTU 97 Identity threshold for OTU clustering.

PCTID_BIN 97 Identity threshold for read classification step. Reducing

this value will cause more reads to be classified (OTU

or chimera).

ABSKEW 2 Abundance skew for de novo chimera filtering. See the

UCHIME paper and supplementary material for a

discussion of abundance skew.

OTUTMPDIR ./otutmp.$$.$RANDOM Name for directory to store temporary files. This

directory is deleted (unless the script fails).

PREFIX OTU_ Prefix for OTU labels.

CHIMPREFIX CHIMERA_ Prefix for chimera labels.

For example,

export MINSIZE=2

export ABSKEW=4

otupipe reads.fasta out_size2_skew4

Using an existing OTU file
You can optionally use an existing OTU file as follows:

otupipe.bash reads.fasta outdir existing_otus.fasta

http://bioinformatics.oxfordjournals.org/content/27/16/2194.long
http://bioinformatics.oxfordjournals.org/content/27/16/2194/suppl/DC1

— 5 —

Here, existing_otus.fasta is a FASTA file containing representative sequences for precomputed

OTUs. For example, existing_otus.fasta could be centroids created by otupipe.bash from some

other set of reads. The existing_otus.fasta file must use a different label convention to avoid

collisions. For example, if you use the default labels OTU_1, OTU_2... for new OTUs, then

existing_otus.fasta could use labels X_1, X_2 and so on.

If you specify an existing_otus.fasta file, then:

 The otus.fa file will contain only new OTUs. New OTUs are created from reads that do

not match the existing_otus.fasta file at the PCTID_OTU threshold, and will have

identity < PCTID_OTU with all sequences in existing_otus.fa. New OTUs will be

numbered 1, 2 etc.

 The readmap.uc file will map reads to both existing and new OTUs.

