

—1—

User Guide

© Copyright 2009 Robert C. Edgar, all rights reserved.

—2—

Table of Contents
Evolver Overview 4

Caveat emptor 4

What is a genome? 4

Inter- and intra-chromosome modules 4

Input data 4

Output data 5

Events 5

Accept probability 5

Mutations 5

Constraint change events 6

Time 8

Event rates 9

Length distributions 9

Constrained elements and gene model 10

Proteins 11

Mobile elements 11

Retroposed pseudo-genes 13

Gene duplication 13

Cycles 13

File formats 13

Rev files 14

GFF files 15

GFF record types 15

Accept probabilities 15

Gene indexes 16

Exons 16

Tandems 16

CpG islands 16

Gene structure 17

Executables 17

Command-line reference for the inter module 18

Command-line reference for the intra module 20

Mobile Element Evolution 21

—3—

Retroposed Pseudo-Genes 24

Preparing the ancestral genome 26

The findns command 28

The xgff command 29

The cvtannots command 30

The genncces command 31

The assncces command 32

The assprobs command 33

Clumping 34

Informal introduction 34

The clumping algorithm 34

Assigning BAPs to a CE of length L 35

Assigning BAPs to CEs in a gene 36

Substitution rates 37

Unmethylated regions and CpG islands 37

CpG sweeps 37

Unmethylated genomes 38

Stationary composition state 38

Accounting for CpG Effects 40

Setting the tick to be one substitution per site 41

The evo_subst_rates.py script 41

Python scripts 43

The probstats command 44

The alnstats command 45

—4—

Evolver Overview
Evolver is a collection of programs designed to simulate the evolution of the nucleotide

sequence of a whole genome.

Caveat emptor
Evolver is a powerful and complex tool. It is not easy to learn or to use, and requires

days or weeks on a typical compute cluster to run large genomes over interesting

evolutionary distances. Users should expect to devote much more time and energy to

Evolver than to a typical bioinformatics tool. A sophisticated understanding of genome

evolution and computer science is required and is assumed in this guide.

What is a genome?
Evolver simulates the evolution of a representative genome of a species over periods long

compared with its generation time. From Evolver‘s perspective, a ―genome‖ is thus a

population average rather than a single individual. It is not designed to simulate

population genetics; there is no explicit model of allele frequencies, gene flow and so on.

Rather, it simulates the long-term averaged effects of mutation and selection over an

entire species.

Inter- and intra-chromosome modules
The core components simulate inter- and intra-chromosome evolution, respectively. The

inter-chromosome module (inter) simulates events involving two chromosomes,

including chromosome fission, fusion and segmental moves and copies in which the

target chromosome is different from the source chromosome. The intra-chromosome

module (intra) simulates events occurring within a single chromosome, including

substitutions, insertions, deletions, moves, copies and so on. This division is driven by

software engineering rather than biological considerations: it is currently possible to

simulate evolution of a single chromosome on a commodity computer typically found in

a compute cluster, but an entire genome would require too much memory and time. This

design also enables intra be run on each chromosome in parallel, reducing the wall-clock

time for a typical simulation by an order of magnitude—just enough to make mammals

tractable.

Input data
Evolver requires:

 an ancestral genome sequence,

 annotations describing the ancestral genome including genes, non-gene conserved

elements, tandem arrays / microsatellites and CpG islands,

 a library of mobile element and retroposed pseudo-gene sequences, and

—5—

 a parameter file specifying a model of evolution including rates for each type of

mutation, amino acid substitution probabilities and so on.

Output data
Evolver produces:

 alignments of the evolved genomes to each other and to their common ancestor,

 annotations of the evolved genome(s), and

 statistics of evolutionary events (e.g. number of accepted and rejected

substitutions) and genome characteristics (e.g. intron length distribution).

Events
There are two classes of evolutionary event: mutations, which modify the primary

sequence, and constraint changes, which modify annotations while leaving the primary

sequence unchanged. Examples of mutations are substitutions, insertions and deletions.

Examples of constraint changes include exon gain and loss.

Accept probability
Every base in the genome has an accept probability, denoted α, with a value k/255, k =

0... 255. If a mutation affects one base then it will usually be accepted with probability α.

If a mutation affects multiple bases then it will generally be accepted with a probability

that is the product of α for each base (making the probability of accepting a multiple-base

event equal to the probability of accepting all of the equivalent sequence of single-base

events). Bases with α=0 are fully constrained and will never undergo a mutation, bases

with α=1 are neutral and will always undergo a proposed mutation (unless the mutation

also affects a base with α < 1). The default state of a base is neutral; no annotation is

needed for unconstrained regions.

Mutations
Evolver proposes mutations at rates specified by parameters in the model. Each mutation

is accepted or rejected with a probability determined by constraints on affected bases. If

no annotations are provided, there are no constraints and all mutations will be accepted.

Types of mutation are listed in the following tables.

—6—

Name Length
distribution

Description

InterChrCopy Yes A segment of one chromosome is duplicated and
inserted into a different chromosome.

InterChrMove Yes A segment of one chromosome is deleted and
inserted into a different chromosome.

ChrSplit No A chromosome is divided into two new
chromosomes.

ChrFuse No Two chromosomes are fused into one new
chromosome.

RecipTransloc No Reciprocal translocation.

NonRecipTransloc No Non-reciprocal translocation.

Inter-chromosome mutation events.

Name Length

distribution
Description

Substitute No A single base is changed.

Delete Yes Deletion.

Invert Yes Inversion.

Move Yes A segment is moved to a new location.

Copy Yes A copy of a segment is made and inserted at a new
location.

Tandem Yes Special case of Copy in which the insertion
immediately follows the copied segment.

TandemExpand No An existing tandem array is expanded by duplicating
one instance of the repeated motif.

TandemContract No An existing tandem array is contracted by deleting
one instance of the repeated motif.

Insert Yes A random sequence is inserted.

MEInsert No A library sequence is inserted. This is used to model
both mobile elements and retroposed pseudo-genes.

Intra-chromosome mutation events.

When an insertion point is required (Insert, MEInsert, [IterChr]Copy and [InterChr]Move

events), the location is selected with uniform probability over the entire chromosome.

Events that require a segment (Delete, Invert, [InterChr]Move, [InterChr]Copy, Tandem

and Insert) similarly sample the start of the segment uniformly over the chromosome.

Constraint change events
Constraint change events modify genome annotation, leaving the primary sequence

unchanged. These events are unconditionally accepted as the ―reject according to

constraint‖ paradigm does not apply. Typically a region is selected with a weight equal to

the mean accept probability (MAC) of its constrained bases. Thus, more rapidly evolving

elements are more likely to be affected. For example, an exon loss event starts by

—7—

selecting a gene weighted by the MAC of all bases in all CEs of that gene. If any exons

can be deleted while leaving a valid protein coding gene, one is selected at random (with

uniform probability in this case) and deleted; otherwise another gene is selected, again

weighted by MAC, until a suitable gene is found. Constraint change events are listed in

the following table.

Event Description

CreateCDS Create a new coding exon from existing intron sequence.

CreateNGE Create a new NGE by copying constraint from an existing

NGE.

CreateNontermUTR Create a non-terminal UTR exon in an existing intron by

finding new splice site signals (two-base donor and two-

base acceptor) that match the current sites.

CreateNXE Create a new NXE (non-exon gene element) by copying

constraint from an existing NXE

CreateTermUTR Create a new first or last UTR exon.

DeleteCDS Convert a coding exon into neutral sequence.

DeleteNGE Convert an NGE to neutral sequence.

DeleteNXE Convert an NXE to neutral sequence.

DeleteUTR Convert a UTR to neutral sequence.

MoveAcceptorCDS Move an acceptor splice site into a coding exon.

MoveAcceptorIntron Move an acceptor splice site into its intron.

MoveDonorCDS Move a donor splice site into a coding exon.

MoveDonorIntron Move donor splice site into its intron.

MoveNGE Move an NGE.

MoveNXE Move an NXE.

MoveStartCDS Move a START codon into a CDS, shortening the CDS.

—8—

Event Description

MoveStartUTR Move start codon into UTR, lengthening the CDS.

MoveStopCDS Move stop codon into CDS, shortening the CDS.

MoveStopUTR Move stop codon into UTR, lengthening the CDS.

MoveUTREnd Move beginning or end of transcription.

Constraint change events.

Constraint change events that modify gene structure.

Time
Evolver uses an arbitrary unit of time we call a tick. We typically set rates in our models

so that one tick is approximately equal to one neutral substitution per site (NSPS).

However, the NSPS unit is fraught with subtle problems and we prefer to regard

measures of neutral substitution rate such as four-fold degenerate sites as emergent

properties of the genome and model rather than a fundamental measure of time.

UTR UTR CD
S

CDS CDS UTR

MoveStartCodonIntoCDS

MoveStartCodonIntoUTR

MoveDonorIntoCDS

MoveCDSDonorIntoIntron

MoveCDSAcceptorIntoIntron

MoveAcceptorIntoCDS

MoveUTRTerm

MoveUTRTerm

MoveStopCodonIntoUTR

MoveStopCodonIntoCDS

MoveUTRAcceptorIntoIntron

MoveAcceptorIntoUTR

MoveDonorIntoUTR

MoveUTRDonorIntoIntron

M
o

v
e

 tra
n

s
la

tio
n

te
rm

in
a

l

M
o
v
e

tra
n
s
c
rip

tio
n

te
rm

in
a
l

M
o
v
e
 s

p
lic

e
 s

ite

Move START Move STOP

Move UTR splice Move CDS splice

M
o

v
e

A
c
c
e
p

to
r

M
o

v
e

D
o
n

o
r

—9—

Event rates
The rate of an event is generally specified as:

 Number of events per object per tick.

The ―object‖ will be a base, a chromosome, a gene etc., as appropriate. Where possible,

the object is chosen to allow the rate parameter to be independent of the genome

sequence and annotations. For example, the rate of UTR loss is specified as UTRs lost

per exon per tick. Thus if the genome has 10
5
 UTRs and the rate of UTR loss is 10

-4
 the

average number of UTRs lost in the genome will be 10 per tick.

Most events use rates per base. The following table lists the exceptions. A tandem base is

a base that was annotated as being in a tandem array or was created by a Tandem or

TandemExpand event.

Event Object

TandemExpand Tandem base

TandemContract Tandem base

MoveStartCodonIntoUTR Gene

MoveStartCodonIntoCDS Gene

MoveStopCodonIntoUTR Gene

MoveStopCodonIntoCDS Gene

MoveUTRTerm Gene

DeleteUTR UTR

CreateNontermUTR UTR

CreateTermUTR UTR

DeleteCDS CDS

CreateCDS CDS

MoveDonorIntoCDS CDS

MoveCDSDonorIntoIntron CDS

MoveAcceptorIntoCDS CDS

MoveCDSAcceptorIntoIntron CDS

MoveDonorIntoUTR UTR

MoveUTRDonorIntoIntron UTR

MoveAcceptorIntoUTR UTR

MoveUTRAcceptorIntoIntron UTR

DeleteNXE NXE

CreateNXE NXE

MoveNXE NXE

DeleteNGE NGE

CreateNGE NGE

MoveNGE NGE

DeleteIsland Island

CreateIsland Island

MoveIsland Island

ChangeGeneSpeed Gene

ChangeNGESpeed NGE

Length distributions
Some events, such as deletions and inversions, can occur at any length scale from a single

base to a large segment. In these cases each length is conceptually a separate type of

—10—

event, each with its own rate. The model specifies rates for some subset of possible

lengths; rates for lengths not specified in the model are determined by linear interpolation

as shown in the following figure.

Constrained elements and gene model
Constrained elements (CEs) are sets of consecutive bases with α<1. Evolver recognizes

four CE types:

 CDS (protein-coding sequence),

 UTR (untranslated exonic sequence),

 NXE (non-exonic CE in a gene), and

 NGE (non-gene element, i.e. a CE that is not part of a gene).

Genes are protein coding; there is no explicit model of RNA genes so base pairing etc. is

not modeled. Genes are defined by a range of positions: a CE belongs to a gene if and

D
e

le
te

 R
a

te

Length 1 2 3 4 5 6 7 8

Missing values
computed by linear
interpolation

Any number of
(Length,Rate) pairs
given as input

Zero rate if Length
> max given

DeleteRates=

Length Rate

========== ==========

 1, 1.000e-6;

 2, 0.800e-6;

 3, 0.600e-6;

 8, 0.100e-6;

Model parameter file

—11—

only if it is found within the coordinate range of a gene. The two bases at the start and

end of each intron are designated as splice sites and are fully constrained (α=0).

Constraints are imposed in order to maintain gene structure, including that inversions

must include all CEs of any affected gene (with one exception: a single NXE may be

inverted with an accept probability that is a parameter of the model), and introns and

UTRs may not become shorter than minimum lengths that are also parameters of the

model. Annotations are required for all CEs except splice sites, which are implied by

introns, which are in term implied by gaps between CDS and UTR annotations belonging

to a single gene.

Proteins
Evolver explicitly models protein evolution. The CDS of a gene must begin with a start

codon and must contain exactly one stop codon which is the last codon in the CDS. Rare

anomalies such as in-frame stop codons are thus not modeled. Frame is maintained: the

CDS length must always be a multiple of three and mutations cannot introduce an in-

frame stop, change the start codon or substitute a stop codon with a translated codon.

Constraint change events may change gene structure, however. Constraint change events

leave the primary sequence unchanged, with the exception of those that move the position

of the stop codon in which case one or two substitutions are made to preserve frame.

The accept probability of a substitution within a codon is computed as a special case as

follows:

 α x (codon substitution probability) x AminoAcidProbMultiplier.

Here, α is the usual accept probability for the base, the codon substitution probability is

specified by a table AminoAcidAcceptProbs in the model, and AminoAcidProbMultiplier

is a parameter of the model. This allows the codon substitution probabilities to be

computed directly from known, closely-related genomes. Then if AminoAcidProb-

Multiplier is set to 1/(mean value of α in CDS bases) the effective codon substitution

probabilities resulting from the simulation will be approximately those in AminoAcid-

AcceptProbs.

Mobile elements
A mobile element (ME) is modeled as a nucleotide sequence that is inserted at a

randomly chosen point in the chromosome. Optionally, a random segment of the ME is

deleted before the sequence is inserted. ME sequences are provided in a FASTA file for

the intra module. The FASTA annotation line specifies the insertion rate and deletion

parameters, for example:

>LINE1; rate "1e-6"; avgdel "20.0"; stddev "5.0"; pct "25.0";

The name of the ME, which may not include a semi-colon, is followed by a list of

attributes in GTF format:

 http://mblab.wustl.edu/GTF2.html

http://mblab.wustl.edu/GTF2.html

—12—

Attributes are:

rate

The insertion rate in units of MEs per chromosome base per tick.

rateperbase

 The insertion rate in units of ME bases per chromosome base per tick.

avgdel

 The mean number of bases to delete, if a deletion is done prior to insertion.

stddev

 Standard deviation of the number of bases to delete.

pct

 Percentage (0...100) of insertions that undergo a deletion prior to insertion.

Exactly one of rate or rateperbase must be specified. If one of avgdel, stddev or pct are

specified, all three must be given.

If rate is given, the number of MEs N inserted into a chromosome of length L in one run

of intra for t ticks will be approximately:

 N = L x rate x t

The average number of bases included when an ME of length m is inserted is:

 b = m – (avgdel x pct) / 100

Thus, the number of ME bases T inserted into the chromosome will be approximately:

 T = Nb = L x rate x t x [m – (avgdel x pct) / 100].

If rateperbase is given, T will be approximately:

 T = L x rateperbase x t.

This gives a more direct calculation of the proportional increase in chromosome size due

to ME insertions, with a less direct calculation of the expected number of insertions N:

 N = T/b = L x rateperbase x t / [m – (avgdel x pct) / 100].

See also the later section Mobile Element Evolution.

—13—

Retroposed pseudo-genes
Retroposed pseudo-genes are sequences derived from transcribed and spliced genes that

are inserted back into the genome at random locations. They are implemented by

extracting spliced sequences from the genome and adding them to the ME library.

Gene duplication
As happens in nature, gene duplication arises as a side effect of large segmental

duplications. These are implemented in Evolver as Copy and InterChrCopy events. If a

complete gene is copied by one of these events, then the new (copied) gene may remain

active and / or the old (original) gene may become inactive according to a table specified

in the model parameter file. For example,

GeneDupeWeights=

 OldSlower OldSame OldFaster OldLost

 NewSlower 0 0 0 0

 NewSame 0 0 1 10

 NewFaster 0 10 10 0

 NewLost 0 100 0 0

The numerical values give the relative probability of a given outcome; i.e. the probability

is the number divided by the sum of all numbers. In the above table the sum is 131 so, for

example, the probability of NewFaster and OldSame is 10/131 = 0.076. ―Faster‖,

―Slower‖ and ―Same‖ refer to the rate at which the gene evolves, i.e. its mean accept

probability (MAC). If a gene is faster, the accept probabilities of its bases are increased,

and so on in the obvious way. ―Lost‖ means that its bases are converted to neutral.

Cycles
The fundamental step in executing Evolver is to invoke the inter-chromosome simulator

(inter) once for the entire genome, then the intra-chromosome simulator (intra) once for

each chromosome. This process is called a cycle. The output from one cycle can be used

as input to another cycle. It is generally better to run many short cycles rather than one or

a few long cycles as longer cycles are less biologically accurate. This is because, viewed

as operators that transform the genome sequence, inter and intra do not commute. For

example, it is possible to estimate the time at which a segmental duplication occurred by

measuring the sequence divergence between the two copies. If the entire simulation was

run as one cycle, all segmental duplications would have approximately the same

sequence divergence and thus appear to have happened at the same time.

File formats
Evolver uses the following file formats:

 FASTA files for sequence data,

 GFF files for annotations,

 Rev files, a binary file format for storing sequences and alignments specifically

designed for Evolver and related projects,

—14—

 Model parameter files, text files designed to be human readable and writeable that

specify parameters of the evolutionary model, and

 Log, report and statistics text files designed to be human or computer readable.

Rev files
We have developed our own file format for use in Evolver and some related projects.

Called Rev and conventionally given the file extension .rev, this format stores:

 Information about one or more genomes, including the genome name and the

name and length of one or more of its chromosomes,

 Zero or more chromosome sequences,

 Zero or more structures (AlnInfo‘s or AI‘s) describing alignments between two or

more chromosome segments, and

 Zero or more sequence alignments (explicit row/column matrix representations

specifying all gaps).

An AlnInfo (AI) stores data concerning one sequence alignment. For each segment

(contiguous region of one chromosome), the AI stores the genome index (0, 1 … G–1

where G is the number of genomes), chromosome id (an arbitrary integer identifying a

chromosome within its genome), start and stop coordinates (positions within the

chromosome starting at zero for the first base), and strand (plus or minus). In addition,

the AI may store one or more attributes of the alignment. An attribute is an (id, value)

pair where id is a small integer identifying the attribute and value is an integer or

floating-point constant.

An alignment always has an AI, but an AI does not necessarily have an alignment.

The binary format of a Rev file is complicated, and we do not at present intend to

document it. The primary reasons for its complexity are (a) indexes that allow certain

kinds of random access to be made efficiently, and (b) the need to achieve a high degree

of compression: at larger evolutionary distances, most alignments are short segments of

neutral DNA; in fact, the median length rapidly approaches one base. Existing file

formats have a large overhead for short alignments. A back of the envelope calculation

shows why. Take the MAF format used by UCSC as an example:

 http://genome.ucsc.edu/FAQ/FAQformat#format5

Here is a short example:

http://genome.ucsc.edu/FAQ/FAQformat%23format5

—15—

 s hg16.chr7 27707221 13 + 158545518 gcagctgaaaaca

 s panTro1.chr6 28869787 13 + 161576975 gcagctgaaaaca

 s baboon 249182 13 + 4622798 gcagctgaaaaca

 s mm4.chr6 53310102 13 + 151104725 ACAGCTGAAAATA

Each segment has an ‗s‘, genome.chromosome, two numbers of the order of the

chromosome length, a strand, spaces for padding, and the gapped sequence. Suppose the

alignment is pair-wise and contains one letter per segment, the chromosome is ~100Mb

long (9 digits), and genome.chromosome is 3.3=7 characters. The minimum number of

spaces for padding is 6. The overhead per segment is therefore approximately ‗s‘=1 +

genome.chromosome=7 + 2 x chromsosome length=18 + segment length=1 + strand=1 +

letters=1 + spacing=6 + 1 new-line byte for a total of 36 bytes per segment = 72 bytes per

alignment. If we now suppose the genome is 3Gb long and the number of alignments is

~10% of the genome length, i.e. 300M, then the file size is ~300M x 72 = 20 Gb.

GFF files
Annotations are stored in GFF files. Evolver follows the GTF2 specification:

 http://mblab.wustl.edu/GTF2.html

Note that GFF records use 1-based chromosome coordinates while Evolver generally

uses 0-based coordinates. Evolver is aware of this and converts as needed.

The source and score fields are ignored by Evolver.

GFF record types
Evolver uses the following GFF feature types:

 UTR, for untranslated exon sequences,

 CDS, for coding sequences,

 NXE, for non-exon conserved elements in a gene,

 NGE, for non-gene conserved elements,

 tandem, for tandem arrays / micro-satellites, and

 island, for CpG islands (more properly, regions that are unmethylated in the germ

line and therefore do not have an elevated C→T transition rate).

Accept probabilities
CE records (UTR, CDS, NXE and NGE) must have a probs attribute which specifies the

accept probability of each base. Probabilities are represented as a string of hex digits, two

for each base. The two digits give a value k = 0…255; the probability is then 1/k. So, for

example, "00" represents α=0 (fully constrained) and "FF", if legal, would represent α=1

(neutral). However, Evolver forbids neutral bases within a CE, so the largest permitted

http://mblab.wustl.edu/GTF2.html

—16—

probability is "FE" = 254/255 = 0.996. The number of probabilities specified must

exactly match the number of bases in the coordinate range specified in the record. Here is

an example:

 chr20 evo NGE 5870 5878 0 . . probs "b0f4aca8e3b3e3fda9";

Gene indexes
Each gene must be assigned an integer identifier that is unique within its chromosome.

Every CE must give its gene using the gene_index attribute, for example:

 chr20 evo NXE 9501 9514 0 . . gene_index 14; probs "200e0e0e1a0e0e0e400e0e180e7a";

Exons
Exons are specified using CDS and UTR records, each of which typically specifies one

exon. If a single exon contains both CDS and UTR bases, this is implied by having

records with consecutive coordinates. The frame field must be set in a CDS record.

Tandems
Tandem arrays and micro-satellites are specified using records with the feature field set

to tandem. The required replen attribute specifies the length of the repeated motif. There

is no provision for specifying truncated or extended copies of the motif (i.e., indels within

the array). For example,

 chr20 trf tandem 3858 3884 54 . . replen 12;

Evolver uses tandem annotations when executing TandemExpand and TandemContract

events, which operate on existing tandem arrays. If no tandem annotations are included in

the input to intra, the rates of these events will initially be zero, but new tandem arrays

may be created by Tandem events which are then subject to TandemExpand and Tandem-

Contract mutations.

The intra module keeps track of tandem arrays internally as the simulation progresses, but

the quality of this internal annotation degrades over time because micro-mutations within

an existing array are not taken into account and new exact or approximate arrays that are

created by chance rather than by a Tandem event are not detected (this would require

implementing a tandem finder algorithm and executing it on the fly). It is therefore

recommended that a tandem finder be run at the beginning of each cycle. We typically

use Gary Benson‘s Tandem Repeat Finder (TRF); other programs are also available. We

provide a script trf2gff.py that converts the .dat files generated by TRF into the GFF

format required by Evolver.

CpG islands
Island records have no attributes; they simply specify the coordinate range of an

unmethylated region. For example,

 chr20 evo island 187576 187851 0 . .

—17—

Gene structure
The user must ensure that CDS records for the ancestral genome specify a valid coding

sequence for each gene. The first codon must be ATG, the last codon must be a stop, and

there must be no in-frame stops. The beginning and end of a gene are determined as the

lowest and highest coordinate in records for its gene index. It is illegal for an NGE to

appear within a gene. Genes may not overlap, and in particular there is no provision for

specifying alternative splicing structures.

Executables
Evolver includes three executable binary programs written in C++:

 evo: inter, intra and several utilities.

 cvt: manipulate Rev and other files, e.g. conversion to and from FASTA and GFF.

 transalign: compute a transitive alignment of genomes A and B from pair-wise

alignments AC and CB with a third genome C.

—18—

Command-line reference for the inter module
Here is a typical command line for running the inter-chromosome simulator:

evo -interchr anc.seq.rev -inannots anc.annots.gff –aln inter.aln.rev \

 -outchrnames chrnames.txt -outgenome ev -outannots inter.outannots.gff \

 -outseq inter.outseq.rev –branchlength 0.001 -statsfile inter.stats \

 -model model.txt -seed 1 -log inter.log

Options are as follows. Note that here the term ―ancestral genome‖ means the genome

used as input to this step; ―evolved genome‖ means the genome generated by inter as a

result of the simulation. The ―original ancestral genome‖ means the input to the first

cycle.

–interchr revfilename

[Input] The name of a Rev file containing the ancestral genome sequence. By default,

the first genome in the file (with genome index 0) is used, this may be overridden by

specifying –genix g where g is the desired genome index.

–inannots gfffilename

[Input] The name of a GFF file containing annotations of the ancestral genome. Island

records should be included—while they have no effect on the simulation, the

coordinates are mapped to the evolved genome and included in the output annotations

that will be needed as input to the intra step. Tandem annotations will also be

mapped, but it would be more natural to run a tandem finder after inter and before

intra.

–model filename

[Input] The name of the file containing the evolutionary model parameters.

–branchlength ticks

[Input] The length of time to simulate in ―ticks‖, Evolver‘s arbitrary unit of time. The

number of ticks is a floating-point number and may be specified using any string

acceptable to the atof function in C.

–seed k

[Input] A random number seed. This may be specified as an integer constant or as the

string stochastic (the default). If an integer seed is specified, the simulation will be

reproducible by giving the same command line. A stochastic seed is computed as

time(0)*getpid(), which won‘t impress your cryptographer friends but is adequate for

this application. The seed is written to the log file, which is helpful, for example,

when trouble-shooting a crash by enabling a second attempt at the same run. If a bug

in Evolver is suspected (surely not!), then a reasonable strategy may be to attempt to

avoid it by using a different seed.

—19—

–aln revfilename

[Output] The name of a Rev file to contain alignments of the ancestor to the evolved

genome.

–outchrnames textfilename

[Output] The name of a text file to contain the names of the chromosomes in the

evolved genome, one per line. Typically, these are the same as the ancestral

chromosome, but the number and / or names of chromosomes may change due to

fusion and fission events. This file is typically used by a script that starts intra-

chromosome simulation following completion of the inter step. It can loop over

chromosomes using something like (bash syntax): for chrname in `cat chrnames.txt`;

do submit_to_cluster run_intra $chrname ; done.

–outgenome genomename

[Output] The name for the evolved genome. Defaults to evolved if not specified.

 –outseq revfilename

[Output] The name of a file to store the evolved genome sequence.

–statsfile filename

[Output] The name of a file to store statistics data. This enables statistics from a

complete cycle, or multiple cycles, to be consolidated into a single report. The format

of this file is designed to be easily parsed by a script rather than read by a person.

–log filename

[Output] The name of a file for miscellaneous logging. Much of the information in

this log file is also written to the stats file for later consolidation.

–targetgenecount k

[Input] A desired number of genes. Over the course of a simulation, the total number

of genes in a genome will tend to increase due to gene duplications. There is no

―deactivate gene‖ event to balance duplications because we felt it was unrealistically

hard to develop model parameters that would achieve balance in gene number. As an

alternative, we allow deletion of excess genes by the inter module. Typically the

target gene count k will be set to the number of genes in the original ancestral

genome, perhaps allowing some random fluctuation. If the number of genes N > k,

then N–k genes are deactivated (bases converted to neutral) by random selection,

weighted by their mean accept probability. This is done before starting the simulation.

If the –annotsminus gfffilename option is also given, GFF records for the deleted

genes will be written to the given file.

—20—

Command-line reference for the intra module
Here is a typical command line for running the intra-chromosome simulator:

evo -inseq inter.outseq.rev -chrname chr20 -branchlength 0.001 -mes mes.fa \

 -inannots chr20.intra.outannots.gff -statsfile chr20.intra.stats \

 -outannots chr20.intra.outannots.gff -model model.txt -seed 1 \

 -aln chr20.aln.rev -outseq chr20.intra.outseq.rev -log chr20.intra.log

Note that here the ―ancestral‖ sequence refers to the sequence that is input to this step; it

is typically the ―evolved‖ sequence from the point of view of a preceding inter run. The

―evolved‖ sequence now refers to the sequence that is output by the intra step.

The following options are as for the inter module:

–inannots gfffilename

–outannots gfffilename

–branchlength ticks

–model filename

–seed k

–statsfile filename

–aln revfilename

–outseq revfilename

–outgenome name

–log filename

Other options include:

–inseq revfilename

[Input] The name of a Rev file containing the ancestral chromosome sequence (other

chromosomes may also be present, if so they are ignored). By default, the first

genome in the file (with genome index 0) is used, this may be overridden by

specifying –genix g where g is the desired genome index. Typically this is the output

sequence file from an inter run.

–chrname name

[Input] The name of the chromosome to evolve. Alternatively the chromosome id

may be specified using –chrid id.

–mes fastafilename

[Input] The name of a FASTA file containing mobile element and retroposed pseudo-

gene sequences. The insertion rates and other parameters for a sequence is specified

in its annotation line, as described previously.

—21—

Mobile Element Evolution
Mobile elements (MEs) evolve, typically at a significantly faster rate than the host

genome. This process can be modeled using the intra module, though some non-trivial

scripting is required. We have developed a framework to implement this, which is

described below. As with many aspects of Evolver, users may to use our solution, modify

our scripts, or develop their own.

In outline, an ME is modeled as a short chromosome. ORFs that code for proteins are

modeled using CDS annotations. ―Speciation‖ and ―extinction‖ of ME subtypes is

modeled by a binary tree that is generated on the fly according to birth / death rates

specified by parameters in a file read by the scripts. Each time intra is invoked, a few

MEs are selected from the current population and designated as active, meaning that they

are included in the ME library given to intra. MEs with long terminal repeats (LTRs)

must be treated as special cases because intra lacks a mechanism for allowing mutations

while maintaining 100% sequence identity between the repeats as required for a

biologically active ME. This is handled by evolving the repeat sequence and intervening

sequence (―body‖) as two separate ―chromosomes‖. When the full ME sequence is

required it is assembled by concatenating (repeat-body-repeat).

To perform mobile element evolution using our framework, each cycle requires the

following files:

 a mobile element configuration file

 a mobile element sequence file

 a long terminal repeat sequence file

 a mobile element annotation file

 a mobile element evolutionary model file

The framework supports different mobile element classes. Each class can contain one or

more members, one of which is active at any point. Each class is associated with a series

of rates that describe how often members of that class get deleted from the class (or

duplicated, giving birth to new elements in the class), and how often they are inserted in

the genome. These are described in the configuration file, with a series of Rate

directives. The syntax is the following:

Rate <ClassName> <RelInsertionRate> <AvgDelFraction> \

 <StdDevFraction> <Pct> <MinLen> <MaxLen> <MaxCount> \

 <DupRate> <DelRate> <LifeTime>

The mobile element sequence file must have FASTA entries with headers of form

ClassName.ID or ClassName.ID:ACTIVE, where ID is an index number that

distinguishes that element within the class (IDs need not be contiguous), and :ACTIVE

distinguishes the previously active element (if any).

—22—

Some mobile element classes can be designated LTR-like classes. The members of these

LTR-like classes must have a corresponding LTR sequence in the long terminal repeat

sequence file, and when these members are used to generate the ME library, their LTR

sequence is prepended and appended. These classes are distinguished in the configuration

file with the LTRClass directive (apart from the Rate directive):

LTRClass <ClassName> <MinLTRLen> <MaxLTRLen>

If multiple LTR-like classes are needed, the LTRClass directive can appear more than

once. The LTR sequence file must have FASTA entries with headers identical to the ones

in the mobile element sequence file, minus the :ACTIVE suffix which should not appear

in the annotations.

At the beginning of each cycle, within each class each ME is either duplicated, deleted, or

kept as-is, in what is called a birth-death process. The rate at which members of a class

will be duplicated or deleted is determined by DupRate and DelRate which are in units

of duplications or deletions per tick. The algorithm for the birth-death process is outlined

here:

If (DeleteRate*Branch + DupRate*Branch > 1.0)

 Normalize such that (DeleteRate*Branch + DupRate*Branch == 1.0)

For each class C

{

 For each member E of class C

 {

 With probability DeleteRate*Branch do

 If (!E.Active) Delete E;

 Else with probability DupRate*Branch do

 Duplicate E;

 }

 }

 If all members of the class have been deleted

 {

 Resurrect a random member of the class

 }

}

After the birth-death process, the sequences of the mobile elements (and, separately, the

LTR sequences) are independently evolved. This is achieved by running intra on the ME

sequence file using an annotation file describing ORFs and / or other CEs. The model

used will typically be different from the model used to evolver the host genome. The

simulation is performed for the branch length of the host multiplied by the

BranchLengthFactor parameter supplied in the configuration file:

—23—

BranchLengthFactor <Factor>

This is a convenient way to arrange for ME evolution to be faster than host evolution

without adjusting a large number of parameters in the model file.

After the ME are evolved, a boundary checking process takes place in order to filter

sequences that the simulation made too long or too short. Specifically, the algorithm is

the following:

For each class C

{

 For each member E of class C

 {

 If (E.SeqLen < C.MinLen)

 Append ((C.MinLen + C.MaxLen)/2 – E.SeqLen) random bases

 ElseIf (E.SeqLen > C.MaxLen)

 {

 If (E.HasGFFEntries)

 Delete E;

 Else

 Chop (E.SeqLen - (C.MinLen + C.MaxLen)/2) bases

 }

 If (C is LTR-Like)

 {

 If (LTR(E).SeqLen < C.MinLTRLen)

 Append ((C.MinLTRLen + C.MaxLTRLen)/2 – LTR(E).SeqLen)

 Else

 Chop (LTR(E).SeqLen - (C.MinLTRLen + C.MaxLTRLen)/2)

 }

 }

 If (C.Empty)

 Consider class C as dead

}

After the boundary check, each class is checked for excessive element count. Classes

whose element count is greater than MaxCount are subject to random deletion of some

members, so that in the end they have exactly as many as MaxCount. When randomly

deleting elements, the active element is excluded.

During the subsequent activation process, an active element is selected for each class. If

the class already has an active element, it is kept active with probability

1.0 - Branch*Class.LifeTime, otherwise it is deactivated and deleted (unless it is

the final remaining element in that class, and that class has no other members). If there is

no previously active element, or if it just got deleted, a new one is selected randomly.

—24—

Regardless of what happens, in the end there will be one active mobile element for each

class, and these elements will be exported to the mobile element library for intra.

When the sequences of active MEs are exported, the rateperbase, avgdel, stddev

and pct parameters are set in each annotation line. These parameters are calculated from

those provided in the configuration file in the Rate directive, with the avgdel and

stddev being calculated by multiplying AvgDelFraction and StdDevFraction with

the element‘s sequence length, which will include twice the LTR length where

appropriate.

The value for the rateperbase parameter, which corresponds to the insertion rate of the

mobile element, is calculated by this formula:

rateperbase = TotalInsertRate * C.RelInsRate / ΣC{C.RelInsRate}

Where TotalInsertRate corresponds to the total insertion rate of a mobile element

base, per chromosome base per tick, and is given in the configuration file by the

following directive:

TotalInsertRate <TotalInsertRate>

This rate is multiplied by the relative insertion rate of the class (normalized by the sum of

the relative insertion rates of all the classes). The library of active elements is further

augmented by the retroposed pseudo-genes in the next step. Also, all the sequences of all

the elements from all the classes (including the active ones) are output in a FASTA file to

be used by the next cycle, along with the propagated annotations (in GFF) and LTR

sequences (in FASTA).

Retroposed Pseudo-Genes
The following parameters in the configuration file affect the way retroposed pseudo-

genes are handled:

RPGHeader <AvgDelFraction> <StdDevFraction> <Pct>

PolyATail <PolyATailLength>

MaxRPGSize <MaxRPGSize>

CountPerTick <Count>

During each simulation cycle, a total of CountPerTick*Branch approximately copies

will be inserted into the genome. These are distributed among a potentially smaller set of

RPG elements; this set is chosen in the following way:

Initialize CopiesLeft = CountPerTick*Branch

While (CopiesLeft > 0)

{

 ThisRPGCopies = PickFromGersteinCurve()

—25—

 CopiesLeft = Copiesleft – ThisRPGCopies

 Select a random gene whose spliced size is < MaxRPGSize,

 and append PolyATailLength bases of A

 Add this sequence to the ME library

}

When the element is added to the library, the avgdel, stddev and pct values are

calculated using the values from the RPGHeader directive and the rateperbase value

is calculated as follows:

rateperbase = ThisRPGCopies * RPG.SeqLen / (GenomeSize * Branch)

—26—

Preparing the ancestral genome
An ancestral genome is required at the start of a simulation. The sequence is required to

be in a .rev file, annotations in GFF files are also required (unless a simulation of neutral

DNA is desired).

The sequence must consist of the letters A, C, G and T only. Wildcards and spacers such

as N are not permitted.

The inter and intra modules accept annotations describing constrained elements (CEs),

tandem arrays and CpG islands. CEs include CDS, UTR, NXE and NGE records, as

described in detail elsewhere. CE records must include a probs attribute, and all CEs

except NGEs must also have a gene_index attribute. CE annotations must conform to

Evolver rules, including: no overlapping genes, no NGEs inside genes, and the

concatenated CDS records for a gene must begin with ATG, have an exact number of

codons, end with a stop codon, and must have no in-frame stops.

The user is free to construct an ancestral sequence and annotations in any way they

choose. In our work, we have developed a procedure for this with some associated tools.

We use a well-annotated model organism sequence, such as human, as our starting point.

Protein-coding gene annotations are extracted from the UCSC genome browser. NXE and

NGE annotations are generated according to a stochastic model. Accept probabilities are

assigned to CE bases, also using a stochastic model.

In outline, we prepare annotations as follows. The various evo options and script

mentioned in the outline are described in more detail shortly.

Chromosome sequences are downloaded from the UCSC genome browser.

 The following UCSC genome browser tracks are downloaded: UCSC genes,

MGC genes, old known genes, Ensemble genes, CpGs.

 The –findns option to evo is used to eliminate runs of Ns and replace other non-

ACGT letters with randomly-chosen valid letters. This command outputs a GFF

file documenting where blocks of Ns were removed; this GFF file is used later by

the –xgff command to re-map annotation coordinates from the original sequence

to the "N-less" version that will be used as input to the simulation.

 The –cvtannots option to evo is used to extract a valid subset of protein-coding

genes.

 Non-coding conserved elements (NCCEs, meaning NGEs and NXEs) are

generated using the –genncces option to evo.

—27—

 The –assncces assigns a subset of NCCEs to genes, converting those to NXEs and

the remainder to NGEs.

 The –assprobs option to evo is used to assign accept probabilities (i.e., generate

probs attributes) for all types of CE.

 Tandem annotations are generated using Gary Benson's Tandem Repeat Finder.

—28—

The findns command
The –findns command removes non-ACGT letters from a sequence. Invalid letters are

replaced by randomly-chosen ACGT letters (chosen with uniform probability).

Optionally, consecutive runs of Ns can also be excised, producing a shorter sequence. In

the latter case, a GFF file is produced to document which regions were deleted; this can

be used by the –xgff command to adjust annotation coordinates to correspond to the new

sequence. Typical usage is as follows.

evo -findns seq.fasta -out_randns randns.fasta -out_x x.fasta -out_gff ns.gff \

 -label_randns label1 -label_x label2 -minns 32 -log findns.log

–findns fastafilename

[Input] The name of a FASTA file containing one or more sequences to be processed.

–min_ns k

[Input] The minimum number of consecutive Ns to be deleted (excised) rather than

being replaced by random letters. Default is 32.

–out_randns fastafilename

[Output] The name of a FASTA file to write the sequence with invalid letters,

including Ns, replaced by random letters.

–out_x fastafilename

[Output] The name of a FASTA file to write the sequence with invalid letters

replaced by random letters and runs of Ns excised.

–out_gff gfffilename

[Output] The name of a GFF file to write the input coordinates of runs of Ns that

were deleted. The GFF feature is nblock. This is used as input by the –xgff command.

–out_randns fastafilename

[Output] The name of a FASTA file to write the sequence with invalid letters,

including Ns, replaced by random letters.

–label_randns label

[Output] The FASTA label to use in the –outrandns file. By default, the label is the

input label with ".randns" appended. Note that if there are two or more sequence in

the input file, they will all get the same label, so this option should only be used with

a single sequence in the input file.

–label_x label

[Output] As for –label_randns for the –out_x file.

—29—

The xgff command
The –xgff command adjusts coordinates in a GFF file to match a sequence from which Ns

have been removed by –findns.

evo -xgff annots.gff -gff_ns ns.gff -out annots.xns.gff -log xgff.log

–xgff gfffilename

[Input] The name of a GFF file containing annotation records for a sequence before

Ns were excised.

–gff_ns gfffilename

[Input] The name of the GFF file documenting blocks of Ns; output by the –outgff

option to –findns.

–out gfffilename

[Output] The name of a GFF file to write the adjusted records.

—30—

The cvtannots command
The –cvtannots command extracts a valid subset from a set of candidate annotations,

eliminating overlapping genes, genes with invalid CDSs, etc. Typical usage is as follows.

evo -cvtannots inannots.gff -out outannots.gff -chrname chr -seq seq.rev \

 -log cvtannots.log

–inannots gfffilename

[Input] The name of a GFF file containing candidate annotation records.

–seq revfilename

[Input] The name of a Rev file containing the sequence. By default the first genome

(i.e., genome with id 0) is assumed; this can be overridden by specifying –genix id.

–chrname name

[Input] The name of the chromosome. By default, the first chromosome in the

genome is used.

–outannots gfffilename

[Output] The name of a GFF file to write output records.

—31—

The genncces command
The –genncces command generates a set of non-coding conserved elements (NCCEs)

according to a stochastic model. Here, "non-coding" means NXEs and NGEs; UTRs are

not included. A better term would perhaps be "non-exon", but this could be confused with

NXEs=non-exon elements that do belong to a gene, and we are de facto stuck with the

existing terminology.

The –genncces command does not classify NCCEs as NXEs and NGEs; this can be done

later by the –assncces command. The primary output from the command is a GFF file

with records having a feature type of ncce. They have no probs or gene_index attributes;

these can be assigned later using the –assncces and –assprobs commands. The output

thus requires significant further processing before it can be used as input to the inter or

intra modules.

Records are generated with a length distribution specified in exactly the same way as for

events such as Delete. Coordinates are randomly distributed throughout the genome,

except that they may not overlap regions given in an "exclude" file which will typically

contain CDS and UTR records for protein-coding genes. Records are generated until a

given fraction of the genome is covered by NCCEs; this fraction is given by the

GenomeNCCEPct parameter in a model file. We typically use a value of 10 with the

result that one tenth of the genome is covered by NCCEs.

Typical usage is:

evo -genncces -excl_gff annots.gff -out ncces.gff -length 100000000 \

 -model model.txt -log genncces.log

–excl_gff gfffilename

[Input] The name of a GFF file containing annotation records. Regions in this file are

excluded from NCCE generation; i.e., no output record may overlap any record in this

file. At least one record must be present as the sequence label to use for output is

taken from this file. There must be exactly one chromosome present; multiple

sequences are not supported.

–model modelfile

[Input] Model parameter file. The length distribution is read from the

NCCELengthDist distribution and the fraction of the genome to cover from the

GenomeNCCEPct parameter.

–length k

[Input] The length of the chromosome in bases. Only records for a single

chromosome can be generated at one time.

–out gfffilename

[Output] The name of a GFF file to write the generated NCCE records. The sequence

label to use for the output records is the one used in the –excl_gff file.

—32—

The assncces command
The –assncces command converts NCCE records into NXE and NGE records, thus

assigning some to genes and designating the rest as non-gene.

Genes are identified from a GFF file containing records with gene_index attributes. This

gives the initial start and end coordinates of each gene. Typically the gene file will

contain CDS and UTR records and the initial start-end coordinates will therefore specify

the transcribed part of the gene. Genes are extended to include non-transcribed regions.

This process is controlled by three parameters: MeanInterGeneFract,

StdDevInterGeneFract and MaxGeneMargin. Typical values we use are

MeanInterGeneFract = 0.2, StdDevInterGeneFract = 0.2 and MaxGeneMargin = 200000.

A region extending from the last transcribed base in one gene to the first transcribed base

in the following gene is called an inter-gene region. Each gene has two margins, one

from the beginning of the gene to the first transcribed base, the other from the last

transcribed base to the end of the gene. Genes are extended so that, on average, a fraction

MeanInterGeneFract of bases are converted to margins. The variation in this fraction for

individual genes is controlled by the StdDevInterGeneFract parameter, which is the

standard deviation of a truncated normal distribution with mean MeanInterGeneFract.

NCCE records found within margins become NXEs, the remainder become NGEs.

Typical usage is:

evo -assncces ncce.gff -genes genes.gff -out nxenge.gff \

 -model model.txt -log assncces.gff

–inannots gfffilename

[Input] The name of a GFF file containing candidate annotation records.

–genes gfffilename

[Input] The name of a GFF file containing records with gene_index attributes.

–model modelfilename

[Input] The name of the model parameter file.

–out gfffilename

[Input] The name of a GFF file to write the NXE and NGE records.

—33—

The assprobs command
The –assprobs command assigns accept probabilities to conserved element (CE) records

in a GFF file.

The following parameters, specified in the model file, control how probabilities are

generated. Typical values are shown.

Mean and std. deviation of mean probabilities generated for non-coding CEs.

NCCEMeanMean = 0.8

NCCEMeanStdDev = 0.2

Mean and std. deviation of mean probabilities generated for CDSs.

CDSMeanMean = 0.5

CDSMeanStdDev = 0.4

Percentage of probabilties to be shuffled when clumping.

ClumpShufflePct = 25

Mean and std. deviation of CE clump length (~= correlation distance).

CEClumpMeanLength = 32

CEClumpLengthStdDev = 16

Accel factor to convert CDSMeanMean to gene NCE mean.

GeneCDSToNCEAccel = 3.5

Probabilities are sampled from truncated normal distributions:

http://en.wikipedia.org/wiki/Truncated_normal_distribution

A truncated distribution is required since valid probabilities have values from zero to one,

but standard probability density functions (PDFs) have domains including all real values

(–∞ to +∞). A truncated normal distribution T(x; a, b, μ', σ) is derived from a normal

(Gaussian) distribution N(x; μ, σ) with mean μ and standard deviation σ by excluding

values x<a and x>b. Note that in our convention, μ' is the true mean of T, which is not in

general the same as μ, the mean of normal distribution N from which it is derived.

However, the "standard deviation" σ of T is by definition the standard deviation of its N.

When probabilities are being generated, we always use a=0 and b=1. The process of

generating probabilities is described in more detail under Clumping.

Typical usage is as follows.

evo -assprobs inannots.gff -out outannots.gff -model model.txt -log assprobs.log

–inannots gfffilename

[Input] The name of a GFF file annotation records.

–model modelfilename

[Input] The name of a model parameter file.

–outannots gfffilename

[Output] The name of a GFF file to write output records.

http://en.wikipedia.org/wiki/Truncated_normal_distribution

—34—

Clumping
Base accept probabilities are generated using a clumping method designed to fulfill the

following requirements.

 Base accept probabilities (BAPs) should be correlated within a CE, e.g. a BAP lower

than the mean should tend to follow another low BAP.

 There should be a known distribution over gene mean accept probabilities (GMAPs)

with a pre-defined mean and standard deviation.

 Mean accept probabilities (MAPs) for CEs within a gene should be "spread" so that

there is a reasonable chance that the mean for a CE will be significantly different

from the mean for its gene.

Informal introduction
The idea is to take a set of probabilities and divide it into subsets so that the subsets

(clumps) will tend to have a spread of means. This is done by 1. sorting, 2. partitioning

into disjoint ranges according to clump length, then 3. introducing outliers by shuffling.

In the case of a gene, a clump will be a CE.

To introduce correlations within a CE, we divide the CE into randomly chosen

subsequences. Each subsequence is then a clump and a CE built in this way will tend to

have contiguous regions of probabilities higher and lower than its mean.

The clumping algorithm
Inputs to clumping are:

A set of lengths Li, i = 1 .. N.

A set of probabilities Pi, i = 1 .. L, where L = ∑ Li.

Each length represents one clump. There are N clumps with a total of L positions. Each

position i has a probability Pi. The output is a set of probability vectors Ci, one for each

clump i, such that the means of each vector tend to differ from the overall mean:

Cij, i = 1 .. N, j = 1 .. Li.

The algorithm proceeds as follows. The probabilities Pi are sorted. A random order is

chosen for the clumps, and probabilities are assigned to clumps in increasing order of

probability and random order of clump. A clump is filled before proceeding to the next

clump. At this point, the ranges of probabilities found in clumps are disjoint.

—35—

We suspect that creating disjoint subsets in this way maximizes the spread of clump

means, but have not attempted to prove it. This is desirable, but we also want to allow

some chance of outlier values in each clump. Spreading means and allowing outliers are

conflicting goals. A compromise is implemented via the next step: shuffling.

To shuffle, pairs of values are selected at random and exchanged between clumps. The

more this is done, the more outliers will be introduced and the more the mean of each

clump will tend to the overall mean. This amount of shuffling can be a user-settable

parameter; by default 25% of bases participate in a shuffle (L/8 swaps). Based on a few

experiments, our sense is that this is qualitatively enough to introduce outliers without

losing the partitioning.

At this stage, each clump is approximately sorted in order of increasing probability—it

was exactly sorted when created, exceptions are introduced by shuffling. As a final step,

the vector of probabilities for each clump is therefore randomized.

Assigning BAPs to a CE of length L
The motivation for clumping an individual CE is to produce correlations between BAPs.

1. L probabilities are generated either according to some PDF (in the case of an NGE) or

obtained from the output from a previous clumping step (in the case of a gene CE).

2. L is partitioned into some small number of clumps of random lengths.

3. The probabilities are clumped.

4. Probabilities are assigned to bases in increasing genome order by first using all

probabilities from the first clump then moving to the next.

 3 1 4 2 5

Random
order of
clumps

—36—

Assigning BAPs to CEs in a gene
1. L probabilities are generated according to some PDF, where L is the total length of all

CEs in the gene.

2. Each CE is considered one clump.

3. Clumping is performed using the given probabilities and CE lengths. This yields a set

of probabilities for each CE.

4. Those probabilities are assigned to each CE using a second round of clumping as

described in the previous section.

—37—

Substitution rates
Evolver assigns separate rates to each possible substitution rate: A→T, C→A and so on.

Strand symmetry is assumed, so C→T has the same rate as A→G etc. This gives a total

of six independent rates, specified by the following model parameters:

 AC_Rate = 0.2

 AG_Rate = 0.6

 AT_Rate = 0.2

 CA_Rate = 0.2

 CG_Rate = 0.2

 CT_Rate = 0.6

Unmethylated regions and CpG islands
The rate parameters above are for unmethylated regions which do not have accelerated

C→T rates in CpG dinucleotides. Methylated regions (most of the genome in the case of

mammals) have elevated rates of C→T substitution in CpG dinucleotides. The increase in

rate is specified by this parameter:

 CpG_C_to_T_Ratio = 10.0

CpG sweeps
For efficiency, accelerated C→T substitution in CpG dinucleotides are implemented

using CpG sweeps. A few times during an intra run the chromosome is scanned in

coordinate order searching for CpGs outside CpG islands. Each time one is found, a

C→T substitution is made with the appropriate probability that will result in the rate

implied by CpG_C_to_T_Ratio.

Sweeps must be done often enough that only a small fraction of CpGs undergo a

mutation to TpG. (Denote this fraction by f). This is because substitution does not

commute with duplication: you can estimate the age of a duplication by looking at the

number of substitutions between the two copies.

The input parameter is q=CpG_C_to_T_Ratio, which is defined as:

 q = (C→T rate outside CpG islands) / (C→T rate inside).

We expect a typical q to be around 10. The C→T rate in CpG islands is:

 s = 1 * P(C→T | C substitutes) * (1 - CGRejectProb)

With typical values, s = 0.6*0.76 = 0.46. The rate outside an island is then Q = qs, with

typical value 10*0.46 = 4.6.

A rate of s is produced by "standard" substitutions, so the added rate to be implemented

by CpG sweeps is:

 R = Q - s

—38—

with typical value R = 4.6 – 0.46 = 4.1.

In one sweep representing a duration of time t, the probability P of a given C→T

substitution is then Rt, providing t << R.

The sweep duration is then determined by f = P = Rt, hence:

 t = f/R

We expect R ~ 5, and choose f = 0.1 as a reasonable default; this gives t = 0.02.

If the branch length b <~ t, then this will result in only a single sweep and we are back to

the problem with duplications. We therefore set a minimum number m of sweeps, say 10,

to ensure a detectable age distribution over duplications. Then:

 t = min(f/R, b/m)

The additional parameters used in implementing this scheme are:

 CpGFraction = 0.1

 MinCpGSweeps = 10

Unmethylated genomes
To specify that the genome is unmethylated, such as for Drosophila, the MinCpGSweeps

parameter is set to zero:

 MinCpGSweeps = 0

Stationary composition state
In our simulations we aim to keep the nucleotide composition of the genome

approximately constant. We now address the question of how to achieve this given the

Evolver model that specifies substition and CpG rates.

Let Nx be the number of letters of type x, x = A, C, G or T.

Let rxy x ≠ y be the substitution rate for x→y, i.e. the probability per unit time that a given

letter x becomes a different letter y.

Let S(x) be the complementary base, e.g. S(A) = T.

By strand symmetry,

 NA = NT (1)

 NC = NG (2)

 rxy = rS(x)S(y) (3)

By (3) above, there are 6 independent rate parameters:

—39—

 A C G T

 A rAC rAG rAT

 C rCA rCG rCT

 G rGA=rCT rGC=rCG rGT=rCA

 T rTA=rAT rTC=rAG rTG=rAC

Over a length of time t small enough that multiple substitutions at a single site can be

ignored, the net change in number of As is:

 ΔA = (number of changes to A) – (number of changes from A)

 = NCrCA t + NGrGA t + NTrTA t – NA (rAC + rAG + rAT) t.

Dividing both sides by t and using eqs. (1) – (3), the net change in number of As per unit

time is:

 ΔA/t = NCrCA + NCrCT + NArAT – NA (rAC + rAG + rAT)

 = NC (rCA + rCT) – NA (rAC + rAG).

Stationarity requires ΔA/t = 0, which gives:

 NC (rCA + rCT) = NA (rAC + rAG). (4)

Similarly,

 ΔC/t = NArAC + NGrGC + NTrTC – NC (rCA + rCG + rCT)

 = NArAC + NCrCG + NArAG – NC (rCA + rCG + rCT)

 = NArAC + NCrCG + NArAG – NC (rCA + rCG + rCT).

and ΔC/t = 0 gives:

 NA (rAC + rAG) = NC (rCA + rCT),

which is identical to (4).

Re-writing (4) in terms of the composition ratio,

 (rCA + rCT) / (rAC + rAG) = NA / NC. (5)

Define pxy to be the probability that a base of type x mutates to a different type y, given

that it undergoes a single substitution; this might be written pxy = P(x→y | x substitutes).

Then rxy = Rx pxy where Rx is the total substitution rate for x, i.e. Rx = ∑y rxy. Then we can

re-write (5) as:

—40—

 RC (pCA + pCT) / RA (pAC + pAG) = NA / NC. (6)

Hence, given the rate RA, composition and conditional probabilities pxy:

 RC = RA (NA / NC) (pAC + pAG) / (pCA + pCT). (7)

Alternatively we can use pAG = pTC by eq. (3), then,

 RC = RA (NA / NC) (pAC + pTC) / (pCA + pCT). (8)

We could additionally assume that:

 pAC = pCA and pTC = pCT (9)

Then (8) becomes:

 RC = RA NA / NC. (10)

However, (9) is only approximately true.

Accounting for CpG Effects
We will call a C that is in a CpG dinucleotide and not in a CpG island an "accelerated" C

due to its elevated C→T rate compared with other Cs. The CpG acceleration factor q

gives the relative C→T rate for accelerated Cs vs. other Cs. Typically we expect q ≈ 10.

We will assume that pCT = P(C→T | C substitutes) does not include CpG effects, i.e. it is

more properly described as:

 P(C→T | C substitutes and C is not accelerated).

Similarly of course for the pGA, which we assume to be equal to pCT by strand symmetry.

We use a prime (') to indicate rates that include CpG effects. Hence,

 RA = rate of A→x for all x != A.

 RC = rate of non-accelerated C→x for all x != C.

 R'C = rate of C→x for all x != C, averaged over all Cs, including accelerated.

 rCT = rate of non-accelerated C→x.

 r'CT = rate of C→x, averaged over all Cs, including accelerated.

Define fA = fraction of genome that is A or T, fC = fraction of genome that is C or G.

Stationary composition requires that the total rate of As changing to Cs and Gs, averaged

over all bases in the genome, is equal to the total rate of Cs changing to As and Ts,

 fA (rAC + rAG) = fC (rCA + r'CT). (11)

—41—

Using rxy = Rx pxy, and defining F to be the fraction of Cs that are accelerated and γ to be

the increase in average rate C→T when CpG effects are included, i.e.:

 γ = 1 + F (q – 1). (12)

Note that the increase C→T rate for accelerated Cs is q – 1, not q, because accelerated Cs

are also subject to "normal" C→T substitutions. Now, using rAC = RA pAC etc., (11) can be

re-written:

 fA RA (pAC + pAG) = fC RC (pCA + γ pCT). (13)

Setting the tick to be one substitution per site
Now we introduce the additional requirement that the average substitution rate is one,

 fA RA + fC R'C = 1. (14)

Solving for RA and RC,

 RA = (1 – fC R'C) / fA, (15)

 R'C = (1 – fA RA) / fC. (16)

We can relate RC and R'C as follows:

 R'C = RC + F (q – 1) rCT (17)

 = RC (pCA + pCG + γ pCT) (18)

Define β = (pCA + pCG + γ pCT), then

 R'C = β RC. (19)

Substituting (19) and (15) into (13) and solving for RC,

 RC = w / (fC (v + β w)). (20)

Where v = pCA + γ pCT and w = pAC + pAG. We can then get RA from (15) and the

individual rates using rxy = Rx pxy.

The evo_subst_rates.py script
The evo_subst_rates.py script computes substitution rates that should, by the above

calculations, give stationary composition and a (neutral, unmethylated) substitution rate

of 1 per site per tick. Inputs are the numbers of A/T and C/G bases in the genome, six

independent substitution probabilities, F (the fraction of Cs that are accelerated) and q

(CpG_C_to_T_Ratio). These input parameters are hard-coded into the source and are

adjusted by editing the script:

—42—

###########################

INPUT PARAMETERS

Edit these as desired.

###########################

N_AT = 1689122543 # for hg18

N_CG = 1168890263 # for hg18

f_CpG = 0.048 # for hg18

q = 10.0

p_AC = 0.2

p_AG = 0.6

p_AT = 0.2

p_CA = 0.2

p_CG = 0.2

p_CT = 0.6

The script writes the computed rate parameters to standard output in a format acceptable

in a model parameter file:

1.4320 gamma = (C->T rate including CpGs) / (rate without CpGs)

1.2592 beta = total C->x rate, scaled to non-CpG C rate = 1.0

0.8672 R_A = sum of rates Ax_Rate

0.9465 R_C = sum of rates Cx_Rate (excludes CpGs)

1.1919 R_C_CpG = avg rate C->x over all bases including CpG

1.0000 Subs/site/tick (should be 1.0)

8.3778% AT fail percent

For composition balance these should be equal:

0.4100 Rate of A or T -> C or G per site

0.4100 Rate of C or G -> A or T per site

Probs (should match input values):

AC=0.2000 AG=0.6000 AT=0.2000

CA=0.2000 CG=0.2000 CT=0.6000

AC_Rate = 0.1734

AG_Rate = 0.5203

AT_Rate = 0.1734

CA_Rate = 0.1893

CG_Rate = 0.1893

CT_Rate = 0.5679

—43—

Python scripts
The following python scripts are provided. Input file names are specified as command-

line arguments, output is written to standard output.

gff.py

 A module used by scripts that manipulate GFF records.

trf2gff.py

 Convert a Tandem Repeat Finder .out file into a GFF file for Evolver.

gff_featurestats.py

Report a table derived from an annotation GFF file showing the number of records of

each feature type and how many bases they cover.

gff_featurestats2.py

Similar to gff_featurestats.py, but compares two annotation files, e.g. ancestral and

evolved or two different genomes evolved from the same ancestor. To include exon

and intron statistics the gff_cdsutr2exons.py and gff_exons2introns.py scripts can be

used.

compost.py

Report nucleotide and dinucleotide composition statistics for a FASTA file containing

one or more sequences.

compost2.py

Similar to compost.py, but compares two FASTA files.

gff_cdsutr2exons.py

Input is a GFF file containing CDS and UTR records. Output is a GFF file containing

records of type exon. There is typically a one-to-one correspondence between CDS-

exon and UTR-exon, but there are exceptions where a single exon has adjacent

UTR+CDS (5') or CDS+UTR (3').

gff_exons2introns.py

Input is a GFF file containing exon records, which must have the gene_index

attribute. Output is a GFF file containing records of type intron.

merge_evostats.py

Input is one or more statistics files produced by the –stats option to inter or intra.

Output is a single statistics file in the same format produced by summing over records

of each type. Used to consolidate statistics from multiple runs prior to producing a

report using evostats_report.py.

evostats_report.py

Input is one statistics file, usually produced by merge_evostats.py. Output is a human-

readable report.

—44—

The probstats command
The –probstats command generates statistics on accept probabilities found in a GFF

annotation file. Typical usage is:

evo -probstats annots.gff -log probstats.log

The log file contains a report with probability distributions for genes and for individual

conserved element types. For example:

NGE:

Mean 0.787, std.dev 0.163

 0.0000 - 0.1000 331 *

 0.1000 - 0.2000 9

 0.2000 - 0.3000 54

 0.3000 - 0.4000 226

 0.4000 - 0.5000 688 **

 0.5000 - 0.6000 1787 *******

 0.6000 - 0.7000 3675 ***************

 0.7000 - 0.8000 5986 ************************

 0.8000 - 0.9000 7708 ********************************

 0.9000 - 1.0000 7648 *******************************

The histogram shows the number of records of the given type (in this case, NGE) having

a mean accept probability falling within each bin. A final table summarizes the mean and

standard deviation for each record type:

 Type Nr Mean StdDev 1 2 4 8 16 32 64 128

============ ========== ====== ====== ===== ===== ===== ===== ===== ===== ===== =====

 Gene 129 0.7323 0.1771

 CDS 1784 0.4984 0.2949 0.30 0.29 0.25 0.19 0.09 -0.01 -0.03 0.00

 GeneNCE 34743 0.8076 0.2083 0.04 0.03 0.02 0.01 -0.01 -0.02 -0.01 -0.01

 NGE 28112 0.7865 0.1628 0.10 0.09 0.06 0.03 -0.01 -0.04 -0.04 -0.02

The columns 1, 2 ... 128 give the correlation coefficient between bases at the given

distance within a single record. A correlation coefficient significantly greater than zero

indicates clustering of probabilities within a record, which is the desired effect of

"clumping".

—45—

The alnstats command
The –alnstats command generates statistics derived from alignments and annotations of a

pair of genomes.

evo -probstats annots.gff -log probstats.log

The log file contains a report with probability distributions for genes and for individual

conserved element types.

